Gut microbiome and health: mechanistic insights

Willem M de Vos, Herbert Tilg, Matthias Van Hul, Patrice D Cani, Willem M de Vos, Herbert Tilg, Matthias Van Hul, Patrice D Cani

Abstract

The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.

Keywords: intestinal barrier function; intestinal microbiology; liver; obesity; probiotics.

Conflict of interest statement

Competing interests: PDC and WMdV are inventors on patent applications dealing with the use of Akkermansia muciniphila and its components in the treatment of metabolic disorders. PDC and WMdV are co-founders of A-Mansia Biotech. PDC is co-founder of Enterosys. WMdV is co-founder of Caelus Health and inventor on patents on the use of Eubacterium hallii.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Total abundance of bacteria according to the different body sites. Bounds for bacteria number in different organs, derived from bacterial concentrations and volume.
Figure 2
Figure 2
Molecules and metabolites produced by the gut microbiota according to the nutrients or metabolic source and their derived compounds. BSCFA, branched SCFA; LPS, lipopolysaccharides; PAMPs, pathogen-associated molecular patterns; SCFA, short chain fatty acids.
Figure 3
Figure 3
Molecular mechanisms linking gut microbiota and host health in both healthy and pathological situation. In healthy situation, colonocytes use butyrate as energy substrate via the beta-oxidation in the mitochondria, thereby consuming oxygen and directly contributing to maintain anaerobic condition in the lumen. Butyrate also binds to peroxisome proliferator-activated receptor gamma (PPARγ) which in turn repress inducible nitric oxide synthase (iNOS), decreases nitric oxide production (NO) and eventually nitrate production. Conversely, in pathological situations low butyrate content in the lumen is associated with lower PPARγ activity, increased glycolysis and lower oxygen consumption. This is associated with a higher expression of iNOS which in turn produces more NO and eventually increases nitrates availability for specific pathogens. Butyrate can also stimulate immune cells such as regulatory T cells (Treg) to reduce inflammation. The nuclear transcription factor aryl hydrocarbon receptor (AhR) is highly expressed and activated in healthy colonocytes, whereas agonists of AhR are lower or reduced AhR activity can lead to altered gut barrier function. Enteroendocrine cells (L-cells) are expressing several key receptors activated by short chain fatty acids (SCFAs), specific endocannabinoids (eCBs) and bile acids (BAs). Activating these receptors increase the secretion of key gut peptides such as glucagon-like peptide (GLP)-1, GLP-2 and peptide YY (PYY). Altogether, the interaction between the gut microbes and these molecular actors contributes to reduce intestinal permeability, to improve insulin secretion and insulin sensitivity, to reduce food intake, to lower plasma lipids and to avoid hepatic steatosis and metabolic endotoxaemia. All these effects are associated with lower inflammation. Conversely, opposite effects have been observed in pathological situations.
Figure 4
Figure 4
Colonocytes and endocrine cells express a variety of receptors able to sense and transmit signals from the microbial environment. Microbial/Pathogen-associated molecular patterns (PAMPs), lipopolyscaccharides (LPS) from the microbiota are detected by pattern recognition receptors, including toll-like receptors (TLRs). Amuc_1100 is a protein expressed on the outer membrane of Akkermansia muciniphila and which has been shown to signal through TLR2 to improve gut barrier function and reduce inflammation. Metabolites secreted by certain microbes (eg, endocannabinoids (eCBs)), generated by microbial digestion of dietary components (eg, short chain fatty acids (SCFAs)) or by transformation of host-derived factors (eg, eCBs and bile acids) can be sensed through various receptors and pathways to alter intestinal integrity and host health. CB1, CB2, cannabinoid receptor type 1 and type 2; TRPV1, transient receptor potential cation channel subfamily V member 1; FXR, farnesoid X receptor; AhR, aryl hydrocarbon receptor; GPR119, GPR43, GPR41, G-protein coupled receptor 119, 43 and 41; MYD88, myeloid differentiation primary response 88; PPARα/γ, peroxisome proliferator-activated receptors alpha and gamma; TGR5, Takeda G protein-coupled receptor 5.

References

    1. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol 2018;44:70–8. 10.1016/j.mib.2018.06.003
    1. Korpela K, Helve O, Kolho K-L, et al. . Maternal fecal microbiota transplantation in Cesarean-Born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 2020;183:324–34. 10.1016/j.cell.2020.08.047
    1. Lloyd-Price J, Mahurkar A, Rahnavard G, et al. . Strains, functions and dynamics in the expanded human microbiome project. Nature 2017;550:61–6. 10.1038/nature23889
    1. Barlow JT, Leite G, Romano AE, et al. . Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small-intestine microbiome. Microbiome 2021;9:214. 10.1186/s40168-021-01162-2
    1. Seekatz AM, Schnizlein MK, Koenigsknecht MJ, et al. . Spatial and temporal analysis of the stomach and small-intestinal microbiota in fasted healthy humans. mSphere 2019;4:e00126–19. 10.1128/mSphere.00126-19
    1. Leite GGS, Weitsman S, Parodi G, et al. . Mapping the segmental Microbiomes in the human small bowel in comparison with stool: a REIMAGINE study. Dig Dis Sci 2020;65:2595–604. 10.1007/s10620-020-06173-x
    1. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-Throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605–15. 10.1136/gut.2007.133603
    1. Qin J, Li R, Raes J, et al. . A human gut microbial gene Catalogue established by metagenomic sequencing. Nature 2010;464:59–65. 10.1038/nature08821
    1. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014;38:996–1047. 10.1111/1574-6976.12075
    1. Li J, Jia H, Cai X, et al. . An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014;32:834–41. 10.1038/nbt.2942
    1. van Nood E, Vrieze A, Nieuwdorp M, et al. . Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–15. 10.1056/NEJMoa1205037
    1. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016;375:2369–79. 10.1056/NEJMra1600266
    1. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021;19:55–71. 10.1038/s41579-020-0433-9
    1. Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab 2021;33:1098–110. 10.1016/j.cmet.2021.05.005
    1. Wang R, Tang R, Li B, et al. . Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021;18:4–17. 10.1038/s41423-020-00592-6
    1. O'Grady J, Murphy CL, Barry L, et al. . Defining gastrointestinal transit time using video capsule endoscopy: a study of healthy subjects. Endosc Int Open 2020;8:E396–400. 10.1055/a-1073-7653
    1. Ding Z, Wang W, Zhang K, et al. . Novel scheme for non-invasive gut bioinformation acquisition with a magnetically controlled sampling capsule endoscope. Gut 2021;70:2297–306. 10.1136/gutjnl-2020-322465
    1. Ph van Trijp M, Wilms E, Ríos-Morales M, et al. . Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: practical and technical aspects to be considered. Am J Clin Nutr 2021;114:843–61. 10.1093/ajcn/nqab149
    1. Booijink CCGM, El-Aidy S, Rajilić-Stojanović M, et al. . High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 2010;12:3213–27. 10.1111/j.1462-2920.2010.02294.x
    1. Zoetendal EG, Raes J, van den Bogert B, et al. . The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. Isme J 2012;6:1415–26. 10.1038/ismej.2011.212
    1. Lema I, Araújo JR, Rolhion N, et al. . Jejunum: the understudied meeting place of dietary lipids and the microbiota. Biochimie 2020;178:124–36. 10.1016/j.biochi.2020.09.007
    1. Wang M, Ahrné S, Jeppsson B, et al. . Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 2005;54:219–31. 10.1016/j.femsec.2005.03.012
    1. van Baar ACG, Nieuwdorp M, Holleman F, et al. . The duodenum harbors a broad Untapped therapeutic potential. Gastroenterology 2018;154:773–7. 10.1053/j.gastro.2018.02.010
    1. Vrieze A, Van Nood E, Holleman F, et al. . Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913–6. 10.1053/j.gastro.2012.06.031
    1. Kootte RS, Levin E, Salojärvi J, et al. . Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 2017;26:611–9. 10.1016/j.cmet.2017.09.008
    1. de Groot P, Nikolic T, Pellegrini S, et al. . Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut 2021;70:92–105. 10.1136/gutjnl-2020-322630
    1. Troost FJ, van Baarlen P, Lindsey P, et al. . Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics 2008;9:374. 10.1186/1471-2164-9-374
    1. van Baarlen P, Troost FJ, van Hemert S, et al. . Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 2009;106:2371–6. 10.1073/pnas.0809919106
    1. van Baarlen P, Troost F, van der Meer C, et al. . Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci U S A 2011;108 Suppl 1:4562–9. 10.1073/pnas.1000079107
    1. Shetty SA, Zuffa S, Bui TPN, et al. . Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces. Int J Syst Evol Microbiol 2018;68:3741–6. 10.1099/ijsem.0.003041
    1. Koopen A, Witjes J, Wortelboer K, et al. . Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut 2021. 10.1136/gutjnl-2020-323297. [Epub ahead of print: 25 Oct 2021].
    1. Gilijamse PW, Hartstra AV, Levin E, et al. . Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose-response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 2020;6:16. 10.1038/s41522-020-0127-0
    1. Swidsinski A, Loening-Baucke V, Verstraelen H, et al. . Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 2008;135:568–79. 10.1053/j.gastro.2008.04.017
    1. Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67:1716–25. 10.1136/gutjnl-2018-316723
    1. Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. . Multi-Omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019;569:655–62. 10.1038/s41586-019-1237-9
    1. Leonard MM, Valitutti F, Karathia H, et al. . Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proc Natl Acad Sci U S A 2021;118:e2020322118. 10.1073/pnas.2020322118
    1. Mars RAT, Yang Y, Ward T, et al. . Longitudinal multi-omics reveals Subset-Specific mechanisms underlying irritable bowel syndrome. Cell 2020;183:1137–40. 10.1016/j.cell.2020.10.040
    1. Tilg H, Adolph TE, Gerner RR, et al. . The intestinal microbiota in colorectal cancer. Cancer Cell 2018;33:954–64. 10.1016/j.ccell.2018.03.004
    1. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut 2016;65:2035–44. 10.1136/gutjnl-2016-312729
    1. Trebicka J, Macnaughtan J, Schnabl B, et al. . The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol 2021;75 Suppl 1:S67–81. 10.1016/j.jhep.2020.11.013
    1. Adolph TE, Mayr L, Grabherr F, et al. . Pancreas-Microbiota cross talk in health and disease. Annu Rev Nutr 2019;39:249–66. 10.1146/annurev-nutr-082018-124306
    1. Riquelme E, Zhang Y, Zhang L, et al. . Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019;178:795–806. 10.1016/j.cell.2019.07.008
    1. Depommier C, Everard A, Druart C, et al. . Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 2019;25:1096–103. 10.1038/s41591-019-0495-2
    1. Qin J, Li Y, Cai Z, et al. . A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55–60. 10.1038/nature11450
    1. Karlsson FH, Tremaroli V, Nookaew I, et al. . Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498:99–103. 10.1038/nature12198
    1. Wu H, Tremaroli V, Schmidt C, et al. . The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab 2020;32:379–90. 10.1016/j.cmet.2020.06.011
    1. Loomba R, Seguritan V, Li W, et al. . Gut Microbiome-Based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2019;30:607. 10.1016/j.cmet.2019.08.002
    1. Frost F, Kacprowski T, Rühlemann M, et al. . Long-Term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut 2021;70:522–30. 10.1136/gutjnl-2020-322753
    1. Cani PD, Van Hul M. Do diet and microbes really 'PREDICT' cardiometabolic risks? Nat Rev Endocrinol 2021;17:259–60. 10.1038/s41574-021-00480-7
    1. Cani PD, Moens de Hase E, Van Hul M. Gut microbiota and host metabolism: from proof of concept to therapeutic intervention. Microorganisms 2021;9:1302. 10.3390/microorganisms9061302
    1. Cani PD, Van Hul M. Mediterranean diet, gut microbiota and health: when age and calories do not add up! Gut 2020;69:1167–8. 10.1136/gutjnl-2020-320781
    1. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2018;15:671–82. 10.1038/s41575-018-0025-6
    1. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017;19:29–41. 10.1111/1462-2920.13589
    1. Chambers ES, Preston T, Frost G, et al. . Role of gut Microbiota-Generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018;7:198–206. 10.1007/s13668-018-0248-8
    1. Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. . The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014;5:3611. 10.1038/ncomms4611
    1. Canfora EE, Jocken JW, Blaak EE. Short-Chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11:577–91. 10.1038/nrendo.2015.128
    1. Rastelli M, Cani PD, Knauf C. The gut microbiome influences host endocrine functions. Endocr Rev 2019;40:1271–84. 10.1210/er.2018-00280
    1. Daubioul CA, Taper HS, De Wispelaere LD, et al. . Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J Nutr 2000;130:1314–9. 10.1093/jn/130.5.1314
    1. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004;92:521–6. 10.1079/bjn20041225
    1. Cani PD, Neyrinck AM, Maton N, et al. . Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes Res 2005;13:1000–7. 10.1038/oby.2005.117
    1. Cani PD, Knauf C, Iglesias MA, et al. . Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006;55:1484–90. 10.2337/db05-1360
    1. Delzenne NM, Cani PD, Daubioul C, et al. . Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005;93 Suppl 1:S157–61. 10.1079/bjn20041342
    1. Cani PD, Hoste S, Guiot Y, et al. . Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr 2007;98:32–7. 10.1017/S0007114507691648
    1. Everard A, Lazarevic V, Derrien M, et al. . Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011;60:2775–86. 10.2337/db11-0227
    1. Cani PD, Possemiers S, Van de Wiele T, et al. . Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091–103. 10.1136/gut.2008.165886
    1. Wang X, Gibson GR. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 1993;75:373–80. 10.1111/j.1365-2672.1993.tb02790.x
    1. Aziz AA, Kenney LS, Goulet B, et al. . Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats. J Nutr 2009;139:1881–9. 10.3945/jn.109.110650
    1. Keenan MJ, Zhou J, McCutcheon KL, et al. . Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity 2006;14:1523–34. 10.1038/oby.2006.176
    1. Zhou J, Martin RJ, Tulley RT, et al. . Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 2008;295:E1160–6. 10.1152/ajpendo.90637.2008
    1. Bui TPN, Ritari J, Boeren S, et al. . Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat Commun 2015;6:10062. 10.1038/ncomms10062
    1. Bui TPN, Mannerås-Holm L, Puschmann R, et al. . Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat Commun 2021;12:4798. 10.1038/s41467-021-25081-w
    1. Rajilić-Stojanović M, Shanahan F, Guarner F, et al. . Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 2013;19:481–8. 10.1097/MIB.0b013e31827fec6d
    1. Brown AJ, Goldsworthy SM, Barnes AA, et al. . The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312–9. 10.1074/jbc.M211609200
    1. Le Poul E, Loison C, Struyf S, et al. . Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003;278:25481–9. 10.1074/jbc.M301403200
    1. Kimura I, Inoue D, Hirano K, et al. . The SCFA receptor GPR43 and energy metabolism. Front Endocrinol 2014;5:85. 10.3389/fendo.2014.00085
    1. Nøhr MK, Pedersen MH, Gille A, et al. . GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013;154:3552–64. 10.1210/en.2013-1142
    1. Brooks L, Viardot A, Tsakmaki A, et al. . Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol Metab 2017;6:48–60. 10.1016/j.molmet.2016.10.011
    1. Psichas A, Sleeth ML, Murphy KG, et al. . The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 2015;39:424–9. 10.1038/ijo.2014.153
    1. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. . From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332–45. 10.1016/j.cell.2016.05.041
    1. Litvak Y, Byndloss MX, Tsolis RM, et al. . Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017;39:1–6. 10.1016/j.mib.2017.07.003
    1. Litvak Y, Mon KKZ, Nguyen H, et al. . Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 2019;25:128–39. 10.1016/j.chom.2018.12.003
    1. Seksik P, Rigottier-Gois L, Gramet G, et al. . Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 2003;52:237–42. 10.1136/gut.52.2.237
    1. Morgan XC, Tickle TL, Sokol H, et al. . Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012;13:R79. 10.1186/gb-2012-13-9-r79
    1. Shelton CD, Byndloss MX. Gut epithelial metabolism as a key driver of intestinal dysbiosis associated with noncommunicable diseases. Infect Immun 2020;88:e00939–19. 10.1128/IAI.00939-19
    1. Blaak EE, Canfora EE, Theis S, et al. . Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020;11:411–55. 10.3920/BM2020.0057
    1. Le Roy T, Moens de Hase E, Van Hul M, et al. . Dysosmobacter welbionis is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut 2022;71:534–43. 10.1136/gutjnl-2020-323778
    1. Shetty SA, Boeren S, Bui TPN, et al. . Unravelling lactate-acetate and sugar conversion into butyrate by intestinal Anaerobutyricum and Anaerostipes species by comparative proteogenomics. Environ Microbiol 2020;22:4863–75. 10.1111/1462-2920.15269
    1. Wang SP, Rubio LA, Duncan SH, et al. . Pivotal roles for pH, lactate, and Lactate-Utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems 2020;5:e00645–20. 10.1128/mSystems.00645-20
    1. Fernández-Veledo S, Vendrell J. Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev Endocr Metab Disord 2019;20:439–47. 10.1007/s11154-019-09513-z
    1. De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. . Microbiota-Produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 2016;24:151–7. 10.1016/j.cmet.2016.06.013
    1. Wang K, Liao M, Zhou N, et al. . Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 2019;26:222–35. 10.1016/j.celrep.2018.12.028
    1. Tannahill GM, Curtis AM, Adamik J, et al. . Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013;496:238–42. 10.1038/nature11986
    1. Wan Y, Yuan J, Li J, et al. . Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic acid cycle intermediates. Clin Nutr 2020;39:3189–98. 10.1016/j.clnu.2020.02.014
    1. Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus 2018;8:ESP-0001-2018. 10.1128/ecosalplus.ESP-0001-2018
    1. Walsh D, McCarthy J, O'Driscoll C, et al. . Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine Growth Factor Rev 2013;24:91–104. 10.1016/j.cytogfr.2012.09.003
    1. Quesniaux VJ, Nicolle DM, Torres D, et al. . Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 2004;172:4425–34. 10.4049/jimmunol.172.7.4425
    1. Poltorak A, He X, Smirnova I, et al. . Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science 1998;282:2085–8. 10.1126/science.282.5396.2085
    1. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017;46:562–76. 10.1016/j.immuni.2017.04.008
    1. Fitzgerald KA, Kagan JC. Toll-Like receptors and the control of immunity. Cell 2020;180:1044–66. 10.1016/j.cell.2020.02.041
    1. Cani PD, Amar J, Iglesias MA, et al. . Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–72. 10.2337/db06-1491
    1. Régnier M, Van Hul M, Knauf C, et al. . Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J Endocrinol 2021;248:R67–82. 10.1530/JOE-20-0473
    1. Tilg H, Burcelin R, Tremaroli V. Liver tissue microbiome in NAFLD: next step in understanding the gut-liver axis? Gut 2020;69:1373–4. 10.1136/gutjnl-2019-320490
    1. Anhê FF, Barra NG, Cavallari JF, et al. . Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep 2021;36:109691. 10.1016/j.celrep.2021.109691
    1. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. . Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228–31. 10.1126/science.1179721
    1. Vijay-Kumar M, Sanders CJ, Taylor RT, et al. . Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 2007;117:3909–21. 10.1172/JCI33084
    1. Takeda K, Akira S. Microbial recognition by Toll-like receptors. J Dermatol Sci 2004;34:73–82. 10.1016/j.jdermsci.2003.10.002
    1. Everard A, Geurts L, Caesar R, et al. . Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 2014;5:5648. 10.1038/ncomms6648
    1. Muccioli GG, Naslain D, Bäckhed F, et al. . The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010;6:392. 10.1038/msb.2010.46
    1. Cani PD, Plovier H, Van Hul M, et al. . Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016;12:133–43. 10.1038/nrendo.2015.211
    1. Devane WA, Dysarz FA, Johnson MR, et al. . Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988;34:605–13.
    1. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993;365:61–5. 10.1038/365061a0
    1. Howlett AC, Barth F, Bonner TI, et al. . International Union of pharmacology. XXVII. classification of cannabinoid receptors. Pharmacol Rev 2002;54:161–202. 10.1124/pr.54.2.161
    1. Devane WA, Hanus L, Breuer A, et al. . Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992;258:1946–9. 10.1126/science.1470919
    1. Mechoulam R, Ben-Shabat S, Hanus L, et al. . Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50:83–90. 10.1016/0006-2952(95)00109-D
    1. Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2020;16:9–29. 10.1038/s41582-019-0284-z
    1. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov 2018;17:623–39. 10.1038/nrd.2018.115
    1. Syed SK, Bui HH, Beavers LS, et al. . Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am J Physiol Endocrinol Metab 2012;303:E1469–78. 10.1152/ajpendo.00269.2012
    1. Depommier C, Vitale RM, Iannotti FA, et al. . Beneficial effects of Akkermansia muciniphila are not associated with major changes in the circulating Endocannabinoidome but linked to higher Mono-Palmitoyl-Glycerol levels as new PPARα agonists. Cells 2021;10:185. 10.3390/cells10010185
    1. Geurts L, Muccioli GG, Delzenne NM, et al. . Chronic endocannabinoid system stimulation induces muscle macrophage and lipid accumulation in type 2 diabetic mice independently of metabolic endotoxaemia. PLoS One 2013;8:e55963. 10.1371/journal.pone.0055963
    1. Geurts L, Lazarevic V, Derrien M, et al. . Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2011;2:149. 10.3389/fmicb.2011.00149
    1. Suriano F, Manca C, Flamand N, et al. . Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: links with inflammation and gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 2022;1867:159056. 10.1016/j.bbalip.2021.159056
    1. Geurts L, Everard A, Van Hul M, et al. . Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015;6:6495. 10.1038/ncomms7495
    1. Everard A, Plovier H, Rastelli M, et al. . Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat Commun 2019;10:457. 10.1038/s41467-018-08051-7
    1. Lefort C, Roumain M, Van Hul M, et al. . Hepatic NAPE-PLD is a key regulator of liver lipid metabolism. Cells 2020;9:1247. 10.3390/cells9051247
    1. Rastelli M, Van Hul M, Terrasi R, et al. . Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. Am J Physiol Endocrinol Metab 2020;319:E647–57. 10.1152/ajpendo.00146.2020
    1. Manca C, Boubertakh B, Leblanc N, et al. . Germ-Free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J Lipid Res 2020;61:70–85. 10.1194/jlr.RA119000424
    1. Cohen LJ, Esterhazy D, Kim S-H, et al. . Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017;549:48–53. 10.1038/nature23874
    1. Lefort C, Cani PD. The liver under the spotlight: bile acids and oxysterols as pivotal actors controlling metabolism. Cells 2021;10:400. 10.3390/cells10020400
    1. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annu Rev Nutr 2019;39:175–200. 10.1146/annurev-nutr-082018-124344
    1. Makishima M, Lu TT, Xie W, et al. . Vitamin D receptor as an intestinal bile acid sensor. Science 2002;296:1313–6. 10.1126/science.1070477
    1. Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim Biophys Acta 2011;1812:956–63. 10.1016/j.bbadis.2011.01.014
    1. Wagner M, Halilbasic E, Marschall H-U, et al. . Car and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 2005;42:420–30. 10.1002/hep.20784
    1. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap--bile acids in metabolic control. Nat Rev Endocrinol 2014;10:488–98. 10.1038/nrendo.2014.60
    1. Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019;15:701–12. 10.1038/s41574-019-0266-7
    1. Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47:241–59. 10.1194/jlr.R500013-JLR200
    1. Ridlon JM, Harris SC, Bhowmik S, et al. . Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016;7:22–39. 10.1080/19490976.2015.1127483
    1. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013;17:657–69. 10.1016/j.cmet.2013.03.013
    1. Jones BV, Begley M, Hill C, et al. . Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 2008;105:13580–5. 10.1073/pnas.0804437105
    1. Sato Y, Atarashi K, Plichta DR, et al. . Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 2021;599:458–64. 10.1038/s41586-021-03832-5
    1. Dong F, Perdew GH. The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes 2020;12:1859812. 10.1080/19490976.2020.1859812
    1. Natividad JM, Agus A, Planchais J, et al. . Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 2018;28:737–49. 10.1016/j.cmet.2018.07.001
    1. Lin Y-H, Luck H, Khan S, et al. . Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes 2019;43:2407–21. 10.1038/s41366-019-0340-1
    1. Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 2020;117:19376–87. 10.1073/pnas.2000047117
    1. Grander C, Adolph TE, Wieser V, et al. . Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018;67:891–901. 10.1136/gutjnl-2016-313432
    1. Wrzosek L, Ciocan D, Hugot C, et al. . Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 2021;70:1299–308. 10.1136/gutjnl-2020-321565
    1. Lamas B, Richard ML, Leducq V, et al. . Card9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016;22:598–605. 10.1038/nm.4102
    1. Lamas B, Hernandez-Galan L, Galipeau HJ, et al. . Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Sci Transl Med 2020;12:eaba0624. 10.1126/scitranslmed.aba0624
    1. Uberoi A, Bartow-McKenney C, Zheng Q, et al. . Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021;29:1235–48. 10.1016/j.chom.2021.05.011
    1. Erturk-Hasdemir D, Oh SF, Okan NA, et al. . Symbionts exploit complex signaling to educate the immune system. Proc Natl Acad Sci U S A 2019. 10.1073/pnas.1915978116. [Epub ahead of print: 06 Dec 2019].
    1. Oh SF, Praveena T, Song H, et al. . Host immunomodulatory lipids created by symbionts from dietary amino acids. Nature 2021;600:302–7. 10.1038/s41586-021-04083-0
    1. Griffin ME, Espinosa J, Becker JL, et al. . Enterococcus peptidoglycan remodeling promotes checkpoint inhibitor cancer immunotherapy. Science 2021;373:1040–6. 10.1126/science.abc9113
    1. Konstantinov SR, Smidt H, de Vos WM, et al. . S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 2008;105:19474–9. 10.1073/pnas.0810305105
    1. Tytgat HLP, van Teijlingen NH, Sullan RMA, et al. . Probiotic gut microbiota isolate interacts with dendritic cells via glycosylated heterotrimeric pili. PLoS One 2016;11:e0151824. 10.1371/journal.pone.0151824
    1. O'Connell Motherway M, Zomer A, Leahy SC, et al. . Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (TAD) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 2011;108:11217–22. 10.1073/pnas.1105380108
    1. O'Connell Motherway M, Houston A, O'Callaghan G, et al. . A bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. Mol Microbiol 2019;111:287–301. 10.1111/mmi.14155
    1. Breton J, Tennoune N, Lucas N, et al. . Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metab 2016;23:324–34. 10.1016/j.cmet.2015.10.017
    1. Legrand R, Lucas N, Dominique M, et al. . Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice-a new potential probiotic for appetite and body weight management. Int J Obes 2020;44:1041–51. 10.1038/s41366-019-0515-9
    1. Depommier C, Everard A, Druart C, et al. . Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 2021;13:1994270. 10.1080/19490976.2021.1994270
    1. Yoon HS, Cho CH, Yun MS, et al. . Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol 2021;6:563–73. 10.1038/s41564-021-00880-5
    1. Cani PD, Knauf C. A newly identified protein from Akkermansia muciniphila stimulates GLP-1 secretion. Cell Metab 2021;33:1073–5. 10.1016/j.cmet.2021.05.004
    1. Meng X, Zhang J, Wu H, et al. . Akkermansia muciniphila Aspartic Protease Amuc_1434* Inhibits Human Colorectal Cancer LS174T Cell Viability via TRAIL-Mediated Apoptosis Pathway. Int J Mol Sci 2020;21:3385. 10.3390/ijms21093385
    1. Depommier C, Van Hul M, Everard A, et al. . Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 2020;11:1231–45. 10.1080/19490976.2020.1737307
    1. Plovier H, Everard A, Druart C, et al. . A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23:107–13. 10.1038/nm.4236
    1. Ottman N, Reunanen J, Meijerink M, et al. . Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 2017;12:e0173004. 10.1371/journal.pone.0173004
    1. Ottman N, Davids M, Suarez-Diez M, et al. . Genome-Scale Model and Omics Analysis of Metabolic Capacities of Akkermansia muciniphila Reveal a Preferential Mucin-Degrading Lifestyle. Appl Environ Microbiol 2017;83:e01014–7. 10.1128/AEM.01014-17
    1. Knauf C, Abot A, Wemelle E, et al. . Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors. Neuroendocrinology 2020;110:139–46. 10.1159/000500602
    1. Fournel A, Drougard A, Duparc T, et al. . Apelin targets gut contraction to control glucose metabolism via the brain. Gut 2017;66:258–69. 10.1136/gutjnl-2015-310230
    1. Knauf C, Cani PD, Perrin C, et al. . Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 2005;115:3554–63. 10.1172/JCI25764
    1. Abot A, Lucas A, Bautzova T, et al. . Galanin enhances systemic glucose metabolism through enteric nitric oxide Synthase-expressed neurons. Mol Metab 2018;10:100–8. 10.1016/j.molmet.2018.01.020
    1. Abot A, Wemelle E, Laurens C, et al. . Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut 2021;70:1078–87. 10.1136/gutjnl-2019-320230
    1. Abot A, Cani PD, Knauf C. Impact of intestinal peptides on the enteric nervous system: novel approaches to control glucose metabolism and food intake. Front Endocrinol 2018;9:328. 10.3389/fendo.2018.00328
    1. Pujo J, Petitfils C, Le Faouder P, et al. . Bacteria-Derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut 2021;70:1088–97. 10.1136/gutjnl-2020-321173
    1. Sakellariou S, Fragkou P, Levidou G, et al. . Clinical significance of AGE-RAGE axis in colorectal cancer: associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer 2016;16:174. 10.1186/s12885-016-2213-5
    1. Peppa M, Mavroeidi I. Experimental animal studies support the role of dietary advanced glycation end products in health and disease. Nutrients 2021;13:3467. 10.3390/nu13103467
    1. Qu W, Yuan X, Zhao J, et al. . Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol Nutr Food Res 2017;61:mnfr.201700118:1700118. 10.1002/mnfr.201700118
    1. Wiame E, Delpierre G, Collard F, et al. . Identification of a pathway for the utilization of the Amadori product fructoselysine in Escherichia coli. J Biol Chem 2002;277:42523–9. 10.1074/jbc.M200863200
    1. TPN B, Troise AD, Nijsse B. Intestinimonas-like bacteria are important butyrate producers that utilize Nε-fructosyllysine and lysine in formula-fed infants and adults. Journal of Functional Foods 2020;70:103974.
    1. Bui TPN, Troise AD, Fogliano V, et al. . Anaerobic degradation of N-ε-Carboxymethyllysine, a major glycation end-product, by human intestinal bacteria. J Agric Food Chem 2019;67:6594–602. 10.1021/acs.jafc.9b02208
    1. Zeisel SH, Mar M-H, Howe JC, et al. . Concentrations of choline-containing compounds and betaine in common foods. J Nutr 2003;133:1302–7. 10.1093/jn/133.5.1302
    1. Demarquoy J, Georges B, Rigault C, et al. . Radioisotopic determination of L-carnitine content in foods commonly eaten in Western countries. Food Chem 2004;86:137–42. 10.1016/j.foodchem.2003.09.023
    1. Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol 2018;16:171–81. 10.1038/nrmicro.2017.149
    1. Koay YC, Chen Y-C, Wali JA, et al. . Plasma levels of trimethylamine-N-oxide can be increased with 'healthy' and 'unhealthy' diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res 2021;117:435–49. 10.1093/cvr/cvaa094
    1. Velasquez MT, Ramezani A, Manal A, et al. . Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 2016;8:326. 10.3390/toxins8110326
    1. Picking JW, Behrman EJ, Zhang L, et al. . MtpB, a member of the MttB superfamily from the human intestinal acetogen Eubacterium limosum, catalyzes proline betaine demethylation. J Biol Chem 2019;294:13697–707. 10.1074/jbc.RA119.009886
    1. Kountz DJ, Behrman EJ, Zhang L, et al. . MtcB, a member of the MttB superfamily from the human gut acetogen Eubacterium limosum, is a cobalamin-dependent carnitine demethylase. J Biol Chem 2020;295:11971–81. 10.1074/jbc.RA120.012934
    1. Feng Y, Bui TPN, Stams AJM, et al. . Comparative genomics and proteomics of Eubacterium maltosivorans: functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environ Microbiol 2022. 10.1111/1462-2920.15886. [Epub ahead of print: 02 Jan 2022].
    1. Molinaro A, Bel Lassen P, Henricsson M, et al. . Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 2020;11:5881. 10.1038/s41467-020-19589-w
    1. Koh A, Molinaro A, Ståhlman M, et al. . Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 2018;175:947–61. 10.1016/j.cell.2018.09.055
    1. Van Hul M, Le Roy T, Prifti E, et al. . From correlation to causality: the case of Subdoligranulum. Gut Microbes 2020;12:1–13. 10.1080/19490976.2020.1849998
    1. Sender R, Fuchs S, Milo R. Are we really Vastly Outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 2016;164:337–40. 10.1016/j.cell.2016.01.013
    1. Neugent ML, Hulyalkar NV, Nguyen VH, et al. . Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. mBio 2020;11:e00218–20. 10.1128/mBio.00218-20

Source: PubMed

3
Abonner