Real-time MRI guided atrial septal puncture and balloon septostomy in swine

Amish N Raval, Parag V Karmarkar, Michael A Guttman, Cengizhan Ozturk, Ranil Desilva, Ronnier J Aviles, Victor J Wright, William H Schenke, Ergin Atalar, Elliot R McVeigh, Robert J Lederman, Amish N Raval, Parag V Karmarkar, Michael A Guttman, Cengizhan Ozturk, Ranil Desilva, Ronnier J Aviles, Victor J Wright, William H Schenke, Ergin Atalar, Elliot R McVeigh, Robert J Lederman

Abstract

Cardiac perforation during atrial septal puncture (ASP) might be avoided by improved image guidance. X-ray fluoroscopy (XRF), which guides ASP, visualizes tissue poorly and does not convey depth information. Ultrasound is limited by device shadows and constrained imaging windows. Alternatively, real-time MRI (rtMRI) provides excellent tissue contrast in any orientation and may enable ASP and balloon atrial septostomy (BAS) in swine. Custom MRI catheters incorporated "active" (receiver antenna) and "passive" (iron or gadolinium) elements. Wholly rtMRI-guided transfemoral ASP and BAS were performed in 10 swine in a 1.5T interventional suite. Hemodynamic results were measured with catheters and velocity encoded MRI. Successful ASP was performed in all 10 animals. Necropsy confirmed septostomy confined within the fossa ovalis in all. BAS was successful in 9/10 animals. Antenna failure in a re-used needle led to inadvertent vena cava tear prior to BAS in 1 animal. ASP in the same animal was easily performed using a new needle. rtMRI illustrated clear device-tissue-lumen relationships in multiple orientations, and facilitated simple ASP and BAS. The mean procedure time was 19 +/- 10 minutes. Septostomy achieved a mean left to right shunt ratio of 1.3:1 in these healthy animals. Interactive rtMRI permits rapid transcatheter ASP and BAS in swine. Further technical development may enable novel applications.

Figures

Figure 1
Figure 1
“Active” ASP needle. A. Schematic of the custom modified loopless antenna ASP needle. To enhance tip visibility, a microcoil is affixed to the distal tip (positive) and connected to the outer shaft (ground). Appropriate tuning, matching and decoupling circuitry connect the needle to a MRI receiver channel. B. Photograph of 6F ASP needle. C. Image of the active ASP needle colored green in a water phantom.
Figure 2
Figure 2
Atrial septal puncture procedure sequence. (A) Baseline transverse slice imaged in real-time. Ao=aorta, RA=right atrium, LA=left atrium, FO=fossa ovalis (white arrow), PV=pulmonary vein. (B) The modified “active” ASP needle (green) can be seen tenting the interatrial septum at the level of the fossa ovalis. (C) The needle tip has entered into the LA. (D) A floppy-tipped 0.018” wire is advanced through the needle into the LA and subsequently left atrial appendage (LAA). It has coupled with the needle signal and therefore appears green. The dilator sheath tip susceptibility marker can be seen abutting the RA side of the septum (yellow arrow).
Figure 3
Figure 3
Selective real-time MR angiogram confirming ASP needle entry into the left atrium. After visual confirmation of ASP needle entry in the left atrium, 3–5mL of 30mM dilute Gd-DTPA is injected through the ASP needle wire port. A saturation pre-pulse is applied to suppress the background as contrast sequentially enhances the lumen of the left atrium (LA), left ventricle (LV) and out the aorta (Ao). Note there is no contrast enhancement of the right ventricle (RV) or outlined pulmonary artery (PA), indicating successful ASP.
Figure 4
Figure 4
Balloon Atrial Septostomy. A 14 mm x 40mm peripheral angioplasty balloon (red) inflated with dilute Gd-DTPA across the interatrial septum. A platinum marker indicates the distal aspect of the balloon (white arrow). The proximal marker is out of plane. Ao = aorta.
Figure 5
Figure 5
Atrial septal measurements. Atrial septal dimensions (A-C) obtained from SSFP short axis view. A=posterior aortic wall to anterior edge of fossa ovalis. B=fossa ovalis. C= posterior edge of fossa ovalis to posterior atrial wall. LA=left atrium, RA=right atrium, RVOT=right ventricular outflow track, SD=standard deviation.
Figure 6
Figure 6
Necropsy photograph after BAS view from the left atrium. The septostomy is centered within the fossa ovalis (FO). There is no gross evidence of thermal injury or valve disruption. MA =mitral annulus, MV=mitral valve

References

    1. Cope C. Technique for transseptal catheterization of the left atrium; preliminary report. J Thorac Surg. 1959;37(4):482–6.
    1. Ross J, Jr, Braunwald E, Morrow AG. Transseptal left atrial puncture; new technique for the measurement of left atrial pressure in man. Am J Cardiol. 1959;3(5):653–5.
    1. Mullins CE. Transseptal left heart catheterization: experience with a new technique in 520 pediatric and adult patients. Pediatr Cardiol. 1983;4(3):239–45.
    1. Braunwald E. Cooperative study on cardiac catheterization. Transseptal left heart catheterization. Circulation. 1968. pp. III74–9.
    1. Friedrich SP, Berman AD, Baim DS, Diver DJ. Myocardial perforation in the cardiac catheterization laboratory: incidence, presentation, diagnosis, and management. Cathet Cardiovasc Diagn. 1994;32(2):99–107.
    1. Bloomfield DA, Sinclair-Smith BC. The Limbic Ledge. A Landmark for Transseptal Left Heart Catheterization. Circulation. 1965;31:103–7.
    1. Venables AW. Balloon atrial septostomy in complete transposition of great arteries in infancy. Br Heart J. 1970;32(1):61–5.
    1. Allen HD, Beekman RH, 3rd, Garson A, Jr, Hijazi ZM, Mullins C, O'Laughlin MP, Taubert KA. Pediatric therapeutic cardiac catheterization: a statement for healthcare professionals from the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 1998;97(6):609–25.
    1. El-Said HG, Ing FF, Grifka RG, Nihill MR, Morris C, Getty-Houswright D, Mullins CE. 18-year experience with transseptal procedures through baffles, conduits, and other intra-atrial patches. Catheter Cardiovasc Interv. 2000;50(4):434–9. discussion 440.
    1. Park SW, Gwon HC, Jeong JO, Byun J, Kang HS, You JR, Cho SS, Lee MJ, Lee Y, Kim S, et al. Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Hum Gene Ther. 2001;12(8):893–903.
    1. Croft CH, Lipscomb K. Modified technique of transseptal left heart catheterization. J Am Coll Cardiol. 1985;5(4):904–10.
    1. Schroeder VA, Shim D, Spicer RL, Pearl JM, Manning PJ, Beekman RH., 3rd Surgical emergencies during pediatric interventional catheterization. J Pediatr. 2002;140(5):570–5.
    1. Kee ST, Rhee JS, Butts K, Daniel B, Pauly J, Kerr A, O'Sullivan GJ, Sze DY, Razavi MK, Semba CP, et al. 1999 Gary J. Becker Young Investigator Award. MR-guided transjugular portosystemic shunt placement in a swine model. J Vasc Interv Radiol. 1999;10(5):529–35.
    1. Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E. Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging. 2005;21(4):463–467.
    1. Strother CM, Unal O, Frayne R, Turk A, Omary R, Korosec FR, Mistretta CA. Endovascular treatment of experimental canine aneurysms: feasibility with MR imaging guidance. Radiology. 2000;215(2):516–9.
    1. Bartels LW, Bos C, van Der Weide R, Smits HF, Bakker CJ, Viergever MA. Placement of an inferior vena cava filter in a pig guided by high-resolution MR fluoroscopy at 1.5 T. J Magn Reson Imaging. 2000;12(4):599–605.
    1. Omary RA, Frayne R, Unal O, Warner T, Korosec FR, Mistretta CA, Strother CM, Grist TM. MR-guided angioplasty of renal artery stenosis in a pig model: a feasibility study. J Vasc Interv Radiol. 2000;11(3):373–81.
    1. Bucker A, Neuerburg JM, Adam GB, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Gunther RW. Real-time MR Guidance for inferior vena cava filter placement in an animal model. J Vasc Interv Radiol. 2001;12(6):753–6.
    1. Buecker A, Adam GB, Neuerburg JM, Kinzel S, Glowinski A, Schaeffter T, Rasche V, van Vaals JJ, Guenther RW. Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. J Magn Reson Imaging. 2002;16(2):201–8.
    1. Buecker A, Spuentrup E, Grabitz R, Freudenthal F, Muehler EG, Schaeffter T, van Vaals JJ, Gunther RW. Magnetic resonance-guided placement of atrial septal closure device in animal model of patent foramen ovale. Circulation. 2002;106(4):511–5.
    1. Spuentrup E, Ruebben A, Schaeffter T, Manning WJ, Gunther RW, Buecker A. Magnetic resonance--guided coronary artery stent placement in a swine model. Circulation. 2002;105(7):874–9.
    1. Rickers C, Jerosch-Herold M, Hu X, Murthy N, Wang X, Kong H, Seethamraju RT, Weil J, Wilke NM. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.
    1. Schalla S, Saeed M, Higgins CB, Martin A, Weber O, Moore P. Magnetic resonance--guided cardiac catheterization in a swine model of atrial septal defect. Circulation. 2003;108(15):1865–70.
    1. Serfaty JM, Yang X, Foo TK, Kumar A, Derbyshire A, Atalar E. MRI-guided coronary catheterization and PTCA: A feasibility study on a dog model. Magn Reson Med. 2003;49(2):258–63.
    1. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation. 2003;108(23):2899–904.
    1. Kuehne T, Yilmaz S, Meinus C, Moore P, Saeed M, Weber O, Higgins CB, Blank T, Elsaesser E, Schnackenburg B, et al. Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. J Am Coll Cardiol. 2004;44(11):2247–9.
    1. Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, Pessanha BS, Thompson RB, Raval AN, DeSilva R, et al. Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol. 2005;45(12):2069–77.
    1. Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Delapaz RL, Bishop PL, Pile-Spellman J. Feasibility of stent placement in carotid arteries with real-time MR imaging guidance in pigs. Radiology. 2005;234(2):558–62.
    1. Schalla S, Saeed M, Higgins CB, Weber O, Martin A, Moore P. Balloon sizing and transcatheter closure of acute atrial septal defects guided by magnetic resonance fluoroscopy: assessment and validation in a large animal model. J Magn Reson Imaging. 2005;21(3):204–11.
    1. Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, Wright VJ, Schenke WH, DeSilva R, Aviles RJ, et al. Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation. 2005;112(5):699–706.
    1. Manke C, Nitz WR, Djavidani B, Strotzer M, Lenhart M, Volk M, Feuerbach S, Link J. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology. 2001;219(2):527–34.
    1. Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hegde S, Rhode K, Barnett M, van Vaals J, Hawkes DJ, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362(9399):1877–82.
    1. Paetzel C, Zorger N, Bachthaler M, Hamer OW, Stehr A, Feuerbach S, Lenhart M, Volk M, Herold T, Kasprzak P, et al. Magnetic resonance-guided percutaneous angioplasty of femoral and popliteal artery stenoses using real-time imaging and intra-arterial contrast-enhanced magnetic resonance angiography. Invest Radiol. 2005;40(5):257–62.
    1. Flamm MD, Cohn KE, Hancock EW. Measurement of systemic cardiac output at rest and exercise in patients with atrial septal defect. Am J Cardiol. 1969;23(2):258–65.
    1. Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, Peters DC, Stine AM, Wright VJ, Schenke WH, et al. Invasive human magnetic resonance imaging during angioplasty: feasibility in a combined XMR suite. Catheter Cardiovasc Interv. 2005;64(3):265–74.
    1. Guttman MA, McVeigh ER. Techniques for fast stereoscopic MRI. Magn Reson Med. 2001;46(2):317–23.
    1. Guttman MA, Lederman RJ, Sorger JM, McVeigh ER. Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson. 2002;4(4):431–42.
    1. Ocali O, Atalar E. Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med. 1997;37(1):112–8.
    1. Yang X, Yeung CJ, Ji H, Serfaty JM, Atalar E. Thermal effect of intravascular MR imaging using an MR imaging-guidewire: an in vivo laboratory and histopathological evaluation. Med Sci Monit. 2002;8(7):MT113–7.
    1. Susil RC, Yeung CJ, Atalar E. Intravascular extended sensitivity (IVES) MRI antennas. Magn Reson Med. 2003;50(2):383–90.
    1. Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med. 2002;47(1):187–93.
    1. Ross J., Jr Transeptal left heart catheterization: a new method of left atrial puncture. Ann Surg. 1959;149(3):395–401.
    1. Brockenbrough E, Braunwald E, Ross J. Transseptal left heart catheterization. Circulation. 1962;25:15–21.
    1. Mitchel JF, Gillam LD, Sanzobrino BW, Hirst JA, McKay RG. Intracardiac ultrasound imaging during transseptal catheterization. Chest. 1995;108(1):104–8.
    1. Tucker KJ, Curtis AB, Murphy J, Conti JB, Kazakis DJ, Geiser EA, Conti CR. Transesophageal echocardiographic guidance of transseptal left heart catheterization during radiofrequency ablation of left-sided accessory pathways in humans. Pacing Clin Electrophysiol. 1996;19(3):272–81.
    1. Lock JE, Khalilullah M, Shrivastava S, Bahl V, Keane JF. Percutaneous catheter commissurotomy in rheumatic mitral stenosis. N Engl J Med. 1985;313(24):1515–8.
    1. Hsu LF, Jais P, Sanders P, Garrigue S, Hocini M, Sacher F, Takahashi Y, Rotter M, Pasquie JL, Scavee C, et al. Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med. 2004;351(23):2373–83.
    1. De Ponti R, Zardini M, Storti C, Longobardi M, Salerno-Uriarte JA. Trans-septal catheterization for radiofrequency catheter ablation of cardiac arrhythmias. Results and safety of a simplified method. Eur Heart J. 1998;19(6):943–50.
    1. Gibbs JL. Congenital heart disease: Interventional catheterisation II: Opening up venous return, the atrial septum, the arterial duct, aortopulmonary shunts, and aortopulmonary collaterals. Heart. 2000;83(2):237–240.
    1. Klepetko W, Mayer E, Sandoval J, Trulock EP, Vachiery J-L, Dartevelle P, Pepke-Zaba J, Jamieson SW, Lang I, Corris P. Interventional and surgical modalities of treatment for pulmonary arterial hypertension. Journal of the American College of Cardiology. 2004;43(12 Supplement 1):S73–S80.
    1. Sievert H, Lesh MD, Trepels T, Omran H, Bartorelli A, Della Bella P, Nakai T, Reisman M, DiMario C, Block P, et al. Percutaneous left atrial appendage transcatheter occlusion to prevent stroke in high-risk patients with atrial fibrillation: early clinical experience. Circulation. 2002;105(16):1887–9.
    1. Block PC. Percutaneous mitral valve repair for mitral regurgitation. J Interv Cardiol. 2003;16(1):93–6.
    1. Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106(24):3006–8.
    1. C BL, Olsson SB, Varnauskas E. Transseptal left heart catheterization: a review of 278 studies. Clin Cardiol. 1986;9(1):21–6.
    1. Roelke M, Smith AJ, Palacios IF. The technique and safety of transseptal left heart catheterization: the Massachusetts General Hospital experience with 1,279 procedures. Cathet Cardiovasc Diagn. 1994;32(4):332–9.
    1. O'Keefe JH, Jr, Vlietstra RE, Hanley PC, Seward JB. Revival of the transseptal approach for catheterization of the left atrium and ventricle. Mayo Clin Proc. 1985;60(11):790–5.
    1. Schoonmaker FW, Vijay NK, Jantz RD. Left atrial and ventricular transseptal catheterization review: losing skills? Cathet Cardiovasc Diagn. 1987;13(4):233–8.
    1. Linker NJ, Fitzpatrick AP. The transseptal approach for ablation of cardiac arrhythmias: experience of 104 procedures. Heart. 1998;79(4):379–82.
    1. Ali Khan MA, Mullins CE, Bash SE, al Yousef S, Nihill MR, Sawyer W. Transseptal left heart catheterisation in infants, children, and young adults. Cathet Cardiovasc Diagn. 1989;17(4):198–201.
    1. Kee ST, Ganguly A, Daniel BL, Wen ZBS, Butts K, Shimikawa A, Pelc NJ, Fahrig R, Dake M. MR-guided Transjugular Intrahepatic Portosystemic Shunt Creation with Use of a Hybrid Radiography/MR System. J Vasc Interv Radiol. 2005;16(2):227–234.

Source: PubMed

3
Abonner