Pediatric Vaccine Hesitancy and the Utilization of Antibody Measurements: A Novel Strategy with Implications for COVID 19

Amrita Dosanjh, Amrita Dosanjh

Abstract

Vaccine hesitancy is a well researched area with implications for both public health and the health of children and their families The factors leading to vaccine hesitancy are often complex and involve fear of the healthcare system and the process of vaccine development, cultural viewpoints and experiences. Pediatric patients often rely on parental guidance and decision making, and this may result in a lack of immunization for some children. The availability of the COVID 19 vaccine has been widely anticipated, yet not all individuals will seek the vaccine. Once vaccines are available for children under the age of 16 years, this long-standing pediatric management issue may again emerge and impact public health. The clinical trial efficacy and safety data for children and adolescents less than 16 years of age are not yet available. A traditional approach is to discuss the concerns of the parent in relationship to presentation and review of American Association of Pediatrics (AAP) and CDC guidelines in the framework of medical and scientific explanations. This includes the presentation of efficacy and safety data. Therefore, the use of lab-based antibody testing adds scientific evidence and emphasizes the need for vaccination against SARS CoV-2 and other pathogens. The purpose of this commentary is to propose lab-based testing as a potential adjunctive strategy in addressing this public health concern. Further study of a pediatric population is required to assess the impact of the selective use of lab-based testing in improving vaccination rates among a pediatric population.

Keywords: antibody; immunization; vaccine.

Conflict of interest statement

The author is the Editor in Chief for the Journal of Asthma and Allergy for Dove Medical Press in New Zealand. The author reports no other conflicts of interest in this work.

© 2021 Dosanjh.

Figures

Figure 1
Figure 1
A proposed workflow for the management of pediatric vaccine hesitancy.

References

    1. Edwards K, Hackell J. Countering vaccine hesitancy. Pediatrics. 2016;138(3):2016–2046. doi:10.1542/peds.2016-2146
    1. LoVecchio A, Cambriglia MD, Fedele MC, et al. Determinants of low measles vaccination coverage in children living in an endemic area. Eur J Pediatr. 2019;178(2):243–251. doi:10.1007/s00431-018-3289-5
    1. leroux-roels G, Lattanzi M, Solis CD, et al. A Phase I randomized, controlled, dose-ranging study of investigational acellular pertussis (aP) and reduced tetanus-diptheria-acellular pertussis (TdaP) booster vaccines in adults. Hum Vaccin Immunother. 2018;14(1):45–58. doi:10.1080/21645515.2017.1385686
    1. Schmid P, Rauber D, Betsch C, Lidolt G, Denker ML. Barriers of influenza vaccination intention and behavior- a systemic rview of influenza vaccine hesitancy, 2005-2016. PLoS One. 2017;12(1):50. doi:10.1371/journal.pone.0170550
    1. Wilson P, Taylor G, Knowles J, Blyth E, Laux J, Jhaveri R. Missed hepatitis B birth dose vaccine is a risk factor for incomplete vaccination at 19 and 24 months. J Infect. 2019;78(2):134–139. doi:10.1016/j.jinf.2018.09.014
    1. Williamson L, Glaab H. Addressing vaccine hesitancy requires an ethically consistent health strategy. BMC Med Ethics. 2018;19(1):84. doi:10.1186/s12910-018-0322-1
    1. Pool V, Tomovici A, Johnson DR, Greenberg DP, Decker MD. Humoral immunity 10 years after booster immunization with an adolescent and adult formulation combined tetanus, diphtheria, and component acellular pertussis vaccine in the USA. Vaccine. 2018;36(17):2282–2287. doi:10.1016/j.vaccine.2018.03.029
    1. Zimmerman P, Perrett KP, Berbers G, Curtis N. Persistence of pneumococcal antibodies after primary immunization with a polysaccharide-protein conjugate vaccine. Arch Dis Child. 2019;104(7):680–684.
    1. Zimmerman P, Perrett K, van der Klis F, Curtis N. doi:10.1111/imcb.12246
    1. Bartsch YC, Wang C, Zohor T, et al. Humoral signatures of protectiveand pathological SARS CoV-2 infeciton in children. Nat Med. 2021;27(3):454–462. doi:10.1038/s41591-021-01263-3
    1. Jacobson RM, An Etta L, Bahta L. The C.A.S.E. approach: guidance for talking to vaccine-hesitant parents. Minnesota Medicine. 2013;96(4):49–50.
    1. Gust DA, Darling N, Kennedy A, Schwartz B. Parents with doubts about vaccines: which vaccines and reasons why. Pediatrics. 2008;122(4):718–725. doi:10.1542/peds.2007-0538
    1. Rowley AH. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat Rev Immunol. 2020;20(8):453–454. doi:10.1038/s41577-020-0367-5
    1. Dror A, Eisenback N, Talber S, et al. Vaccine hesitancy: the next challenge in the fight agains COVID-19. Eur J Epidemiol. 2020;35:775–779. doi:10.1007/s10654-020-00671-y
    1. Nguyen K, Srivastav A, Razzaghi H, et al. COVID-19 vaccination intent, perceptions and reasons for not vacccinating among groups prioritized for early vaccination-United States, September and December 2020. MMWR. 2021;70696:217–222.
    1. Iteli H, McGuire EP, Muresan P, et al. Development and application of multiplex assay for the simultaneous measurement of antibody responses elicited by common childhood vaccines. Vaccine. 2018;36(37):5600–5608. doi:10.1016/j.vaccine.2018.07.048
    1. godlee F. What should we do about vaccine hesitancy? BMJ. 2019;365:14044.

Source: PubMed

3
Abonner