Echocardiographic assessment of estimated right atrial pressure and size predicts mortality in pulmonary arterial hypertension

Christopher Austin, Khadija Alassas, Charles Burger, Robert Safford, Ricardo Pagan, Katherine Duello, Preetham Kumar, Tonya Zeiger, Brian Shapiro, Christopher Austin, Khadija Alassas, Charles Burger, Robert Safford, Ricardo Pagan, Katherine Duello, Preetham Kumar, Tonya Zeiger, Brian Shapiro

Abstract

Background: Elevated mean right atrial pressure (RAP) measured by cardiac catheterization is an independent risk factor for mortality. Prior studies have demonstrated a modest correlation with invasive and noninvasive echocardiographic RAP, but the prognostic impact of estimated right atrial pressure (eRAP) has not been previously evaluated in patients with pulmonary arterial hypertension (PAH).

Methods: A retrospective analysis of 121 consecutive patients with PAH based on right-sided heart catheterization and echocardiography was performed. The eRAP was calculated by inferior vena cava diameter and collapse using 2005 and 2010 American Society of Echocardiography (ASE) definitions. Accuracy and correlation of eRAP to RAP was assessed. Kaplan-Meier survival analysis by eRAP, right atrial area, and Registry to Evaluate Early and Long-term PAH Disease Management (REVEAL Registry) risk criteria as well as univariate and multivariate analysis of echocardiographic findings was performed.

Results: Elevation of eRAP was associated with decreased survival time compared with lower eRAP (P < .001, relative risk = 7.94 for eRAP > 15 mm Hg vs eRAP ≤ 5 mm Hg). Univariate analysis of echocardiographic parameters including eRAP > 15 mm Hg, right atrial area > 18 cm², presence of pericardial effusion, right ventricular fractional area change < 35%, and at least moderate tricuspid regurgitation was predictive of poor survival. However, multivariate analysis revealed that eRAP > 15 mm Hg was the only echocardiographic risk factor that was predictive of mortality (hazard ratio = 2.28, P = .037).

Conclusions: Elevation of eRAP by echocardiography at baseline assessment was strongly associated with increased risk of death or transplant in patients with PAH. This measurement may represent an important prognostic component in the comprehensive echocardiographic evaluation of PAH.

Figures

Figure 1 –
Figure 1 –
Estimated right atrial pressure by echocardiography. A-D, The inferior vena cava (IVC) (*) during normal respiration (A) and inspiratory sniff (B) in a patient with estimated right atrial pressure of 5 mm Hg. Conversely, the IVC in a patient with estimated right atrial pressure of 20 mm Hg is dilated during normal respiration (C) and does not collapse with inspiratory sniff (D).
Figure 2 –
Figure 2 –
Right atrial size by echocardiography. A-B, The right atria (*) can be measured by echocardiography with area ≤ 18 cm2 defined as normal (A) and > 18 cm2 considered enlarged (B).
Figure 3 –
Figure 3 –
Survival by estimated right atrial pressure (eRAP). The pulmonary arterial hypertension cohort was stratified by eRAP and survival was analyzed by Kaplan-Meier. A-B, Analysis was performed for the 2005 (A) and 2010 (B) American Society of Echocardiography-defined eRAP. The groups were significantly different, and stratification by eRAP was similar for 2005 and 2010 eRAP definitions. Right atrial pressure > 15 mm Hg was significantly associated with decreased transplant-free survival at 3 y after baseline echocardiography.
Figure 4 –
Figure 4 –
Survival by estimated right atrial area. Enlarged right atrial area (> 18 cm2) was associated with increased death or transplant at 3 y by Kaplan-Meier analysis.
Figure 5 –
Figure 5 –
Survival by Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease Management (REVEAL Registry) 1-y risk. The pulmonary arterial hypertension cohort was stratified by calculated REVEAL Registry 1-y risk and survival analyzed by Kaplan-Meier. Very high risk patients were significantly more likely to experience death or transplantation at 3 y.

References

    1. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992-1007.
    1. McLaughlin VV, Archer SL, Badesch DB, et al. ; ACCF/AHA. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc, and the Pulmonary Hypertension Association. [published correction appears in Circulation. 2009;120(2):e13]. Circulation. 2009;119(16):2250-2294.
    1. Schannwell CM, Steiner S, Strauer BE. Diagnostics in pulmonary hypertension. J Physiol Pharmacol. 2007;58(suppl 5)(pt 2):591-602.
    1. Benza RL, Gomberg-Maitland M, Miller DP, et al. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012;141(2):354-362.
    1. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343-349.
    1. Fenstad ER, Le RJ, Sinak LJ, et al. Pericardial effusions in pulmonary arterial hypertension: characteristics, prognosis, and role of drainage. Chest. 2013;144(5):1530-1538.
    1. Honeycutt GR, Safdar Z. Pulmonary hypertension complicated by pericardial effusion: a single center experience. Ther Adv Respir Dis. 2013;7(3):151-159.
    1. Lee WT, Ling Y, Sheares KK, Pepke-Zaba J, Peacock AJ, Johnson MK. Predicting survival in pulmonary arterial hypertension in the UK. Eur Respir J. 2012;40(3):604-611.
    1. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493-496.
    1. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685-713.
    1. Farber HW, Foreman AJ, Miller DP, McGoon MD. REVEAL Registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congest Heart Fail. 2011;17(2):56-64.
    1. Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW. Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. Crit Care Med. 2013;41(3):833-841.
    1. Lang RM, Bierig M, Devereux RB, et al. ; Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-1463.
    1. Baque-Juston MC, Wells AU, Hansell DM. Pericardial thickening or effusion in patients with pulmonary artery hypertension: a CT study. AJR Am J Roentgenol. 1999;172(2):361-364.
    1. Kitabatake A, Inoue M, Asao M, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68(2):302-309.
    1. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70(4):657-662.
    1. Currie PJ, Seward JB, Chan KL, et al. Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients. J Am Coll Cardiol. 1985;6(4):750-756.
    1. Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140(3):272-278.
    1. Raymond RJ, Hinderliter AL, Willis PW, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214-1219.
    1. Bustamante-Labarta M, Perrone S, De La Fuente RL, et al. Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr. 2002;15(10 pt 2):1160-1164.
    1. Simonneau G, Robbins IM, Beghetti M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(suppl 1):S43-S54.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D; Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130(6):461-470.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-381.
    1. Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122(2):164-172.
    1. Galiè N, Torbicki A, Barst R, et al. ; Task Force. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004;25(24):2243-2278.
    1. Hinderliter AL, Willis PW, 4th, Long W, et al. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84(4):481-484.
    1. Shimony A, Fox BD, Langleben D, Rudski LG. Incidence and significance of pericardial effusion in patients with pulmonary arterial hypertension. Can J Cardiol. 2013;29(6):678-682.
    1. Ngian GS, Stevens W, Prior D, et al. Predictors of mortality in connective tissue disease-associated pulmonary arterial hypertension: a cohort study. Arthritis Res Ther. 2012;14(5):R213.
    1. Humbert M, Sitbon O, Yaïci A, et al. ; French Pulmonary Arterial Hypertension Network. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J. 2010;36(3):549-555.
    1. McLaughlin VV, Presberg KW, Doyle RL, et al. ; American College of Chest Physicians. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(suppl 1):78S-92S.
    1. Thenappan T, Shah SJ, Rich S, Gomberg-Maitland M. A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J. 2007;30(6):1103-1110.
    1. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(5):711-721.
    1. Forfia PR, Fisher MR, Mathai SC, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034-1041.
    1. Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1299-1309.
    1. Tei C, Dujardin KS, Hodge DO, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9(6):838-847.
    1. Ruan Q, Nagueh SF. Clinical application of tissue Doppler imaging in patients with idiopathic pulmonary hypertension. Chest. 2007;131(2):395-401.
    1. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436-1448.
    1. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(suppl 1):i2-i13.
    1. Celermajer DS, Marwick T. Echocardiographic and right heart catheterization techniques in patients with pulmonary arterial hypertension. Int J Cardiol. 2008;125(3):294-303.

Source: PubMed

3
Abonner