Noninvasive assessment of airflows by electrical impedance tomography in intubated hypoxemic patients: an exploratory study

Tommaso Mauri, Elena Spinelli, Francesca Dalla Corte, Eleonora Scotti, Cecilia Turrini, Marta Lazzeri, Laura Alban, Marco Albanese, Donatella Tortolani, Yu-Mei Wang, Savino Spadaro, Jian-Xin Zhou, Antonio Pesenti, Giacomo Grasselli, Tommaso Mauri, Elena Spinelli, Francesca Dalla Corte, Eleonora Scotti, Cecilia Turrini, Marta Lazzeri, Laura Alban, Marco Albanese, Donatella Tortolani, Yu-Mei Wang, Savino Spadaro, Jian-Xin Zhou, Antonio Pesenti, Giacomo Grasselli

Abstract

Background: Noninvasive monitoring of maximal inspiratory and expiratory flows (MIF and MEF, respectively) by electrical impedance tomography (EIT) might enable early recognition of changes in the mechanical properties of the respiratory system due to new conditions or in response to treatments. We aimed to validate EIT-based measures of MIF and MEF against spirometry in intubated hypoxemic patients during controlled ventilation and spontaneous breathing. Moreover, regional distribution of maximal airflows might interact with lung pathology and increase the risk of additional ventilation injury. Thus, we also aimed to describe the effects of mechanical ventilation settings on regional MIF and MEF.

Methods: We performed a new analysis of data from two prospective, randomized, crossover studies. We included intubated patients admitted to the intensive care unit with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) undergoing pressure support ventilation (PSV, n = 10) and volume-controlled ventilation (VCV, n = 20). We measured MIF and MEF by spirometry and EIT during six different combinations of ventilation settings: higher vs. lower support during PSV and higher vs. lower positive end-expiratory pressure (PEEP) during both PSV and VCV. Regional airflows were assessed by EIT in dependent and non-dependent lung regions, too.

Results: MIF and MEF measured by EIT were tightly correlated with those measured by spirometry during all conditions (range of R2 0.629-0.776 and R2 0.606-0.772, respectively, p < 0.05 for all), with clinically acceptable limits of agreement. Higher PEEP significantly improved homogeneity in the regional distribution of MIF and MEF during volume-controlled ventilation, by increasing airflows in the dependent lung regions and lowering them in the non-dependent ones.

Conclusions: EIT provides accurate noninvasive monitoring of MIF and MEF. The present study also generates the hypothesis that EIT could guide PSV and PEEP settings aimed to increase homogeneity of distending and deflating regional airflows.

Keywords: Acute respiratory distress syndrome; Electrical impedance; Mechanical ventilation; Respiratory airflow; Respiratory failure; Spirometry.

Conflict of interest statement

Dr Mauri received personal fees as speaker from Drager, outside the submitted work. Dr. Grasselli received funding for lectures from Getinge, Draeger Medical, Fisher & Paykel, Pfizerand and travel/accommodation/congress registration support from Biotest and Getinge. The remaining authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Airflow waveforms measured by spirometer (red line) and electrical impedance tomography (EIT) (blue line) in two representative patients during pressure support ventilation (left) and volume-controlled ventilation (right). Note the correspondence between peak values by the two methods, with only modest underestimation by EIT
Fig. 2
Fig. 2
Correlations and Bland–Altman plots of airflows measured by spirometer and electrical impedance tomography (EIT). Top panels (a, b) show data for maximal inspiratory flow (MIF), while bottom panels (c, d) for maximal expiratory flow (MEF)
Fig. 3
Fig. 3
Lower levels of pressure support improved homogeneity of regional maximal flow distribution both during inspiration and expiration in comparison with higher support (PSVlow vs. PSVhigh) (a); higher positive end-expiratory pressure level led to an improvement in maximal inspiratory and expiratory flows (MIF and MEF) homogeneity both during pressure support ventilation (PSV-PEEPhigh vs. PSV-PEEPlow) (b) and volume-controlled ventilation (VCV-PEEPhigh vs. VCV-PEEPlow); (c) dashed line represents perfect homogeneity

References

    1. Mauri T, Mercat A, Grasselli G. What’s new in electrical impedance tomography. Intensive Care Med. 2018;1:1. doi: 10.1007/s00134-018-5398-z.
    1. Bikker IG, Leonhardt S, Bakker J, et al. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med. 2009;35(8):1362–1367. doi: 10.1007/s00134-009-1512-6.
    1. Chen L, Del Sorbo L, Grieco DL, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132–136. doi: 10.1164/rccm.201702-0388LE.
    1. Frerichs I, Zhao Z, Becher T, et al. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol Meas. 2016;37(6):698–712. doi: 10.1088/0967-3334/37/6/698.
    1. Cressoni M, Cadringher P, Chiurazzi C, et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(2):149–158.
    1. Wolf GK, Gómez-Laberge C, Rettig JS, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013;41(5):1296–1304. doi: 10.1097/CCM.0b013e3182771516.
    1. Gilbert R, Auchincloss JH, Jr, Brodsky J, et al. Changes in tidal volume, frequency, and ventilation induced by their measurement. J Appl Physiol. 1972;33(2):252–254. doi: 10.1152/jappl.1972.33.2.252.
    1. Bodenstein M, Boehme S, Bierschock S, et al. Determination of respiratory gas flow by electrical impedance tomography in an animal model of mechanical ventilation. BMC Pulm Med. 2014;14:73. doi: 10.1186/1471-2466-14-73.
    1. Mauri T, Bellani G, Confalonieri A, et al. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support. Crit Care Med. 2013;41(7):1664–1673. doi: 10.1097/CCM.0b013e318287f6e7.
    1. The ARDS Definition Task Force Acute respiratory distress syndrome. The Berlin definition. JAMA. 2012;307(23):2526–2533.
    1. Mauri T, Eronia N, Turrini C, et al. Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Med. 2016;42(10):1576–1587. doi: 10.1007/s00134-016-4467-4.
    1. Mauri T, Eronia N, Abbruzzese C, et al. Effects of sigh on regional lung strain and ventilation heterogeneity in acute respiratory failure patients undergoing assisted mechanical ventilation. Crit Care Med. 2015;43(9):1823–1831. doi: 10.1097/CCM.0000000000001083.
    1. Zhao Z, Möller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med. 2009;35(11):1900–1906. doi: 10.1007/s00134-009-1589-y.
    1. Miller MR, Hankinson J, Brusasco V, et al. ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Mauri T, Alban L, Turrini C, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi: 10.1007/s00134-017-4890-1.
    1. Mauri T, Cambiaghi B, Spinelli E, et al. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017;5(14):292. doi: 10.21037/atm.2017.06.55.
    1. Vogt B, Pulletz S, Elke G, et al. Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J Appl Physiol. 2012;113(7):1154–1161. doi: 10.1152/japplphysiol.01630.2011.
    1. Vogt B, Zhao Z, Zabel P, et al. Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L8–L19. doi: 10.1152/ajplung.00463.2015.
    1. Zhao Z, Muller-Lisse U, Frerichs I, et al. Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol Meas. 2013;34(11):N107–N114. doi: 10.1088/0967-3334/34/11/N107.
    1. Mauri T, Turrini C, Eronia N, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21(Suppl 3):312. doi: 10.1186/s13054-017-1905-9.
    1. Maeda Y, Fujino Y, Uchiyama A, et al. Effects of peak inspiratory flow on development of ventilator-induced lung injury in rabbits. Anesthesiology. 2004;101(3):722–728. doi: 10.1097/00000542-200409000-00021.
    1. Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009;35(6):1132–1137. doi: 10.1007/s00134-009-1447-y.
    1. Karagiannidis C, Waldmann AD, Róka PL, et al. Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study. Crit Care. 2018;22(1):221. doi: 10.1186/s13054-018-2137-3.
    1. Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44(9):e838–e845. doi: 10.1097/CCM.0000000000001718.
    1. Katira BH, Engelberts D, Otulakowski G, et al. Abrupt deflation after sustained inflation causes lung injury. Am J Respir Crit Care Med. 2018;198(9):1165–1176. doi: 10.1164/rccm.201801-0178OC.
    1. Broche L, Perchiazzi G, Porra L, et al. Dynamic mechanical interactions between neighboring airspaces determine cyclic opening and closure in injured lung. Crit Care Med. 2017;45(4):687–694. doi: 10.1097/CCM.0000000000002234.
    1. Mauri T, Yoshida T, Bellani G, et al. PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42(9):1360–1373. doi: 10.1007/s00134-016-4400-x.
    1. Baedorf Kassis E, Loring SH, Talmor D. Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS. Intensive Care Med. 2016;42(8):1206–1213. doi: 10.1007/s00134-016-4403-7.
    1. Frerichs I, Amato MB, van Kaam AH, TREND study group et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72(1):83–93. doi: 10.1136/thoraxjnl-2016-208357.
    1. Borgmann S, Schmidt J, Goebel U, Haberstroh J, Guttmann J, Schumann S. Dorsal recruitment with flow-controlled expiration (FLEX): an experimental study in mechanically ventilated lung-healthy and lung-injured pigs. Crit Care. 2018;22:245. doi: 10.1186/s13054-018-2168-9.

Source: PubMed

3
Abonner