Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11)

Walter J F M van der Velden, Thijs M P van Iersel, Nicole M A Blijlevens, J Peter Donnelly, Walter J F M van der Velden, Thijs M P van Iersel, Nicole M A Blijlevens, J Peter Donnelly

Abstract

Background: The treatment of patients with haematological malignancies by means of haematopoietic stem cell transplantation (HSCT) is often accompanied by life threatening infections. With emerging antimicrobial resistance there is an increased need for new agents, with a beneficial safety profile. Therefore we evaluated the safety of the promising new antimicrobial peptide human lactoferrrin 1-11 (hLF1-11) in healthy volunteers and patients.

Methods: We undertook a sequential, randomised, double-blind, placebo-controlled study using ascending single (0.005, 0.05, 0.5, 5 mg) and multiple intravenous doses (0.5, 5 mg) in healthy volunteers, and open-label, single intravenous 5 mg doses in autologous HSCT recipients.

Results: Single and multiple doses of hLF1-11 were tolerable up to 5 mg intravenously in healthy volunteers, while 5 mg single dose was tolerable in patients. Elevations in transaminases possibly related to treatment were reversible and not serious.

Conclusion: The new antimicrobial hLF1-11 is well tolerated in healthy volunteers with repeated daily doses up to 5 mg. The side-effect profile is very favourable for an antimicrobial, the only undesirable effect being a possible elevation of transaminases, which may be related to hLF1-11 although the current data do not allow conclusive interpretation of treatment relationship. A lower dose is recommended for the forthcoming multiple dosing studies in HSCT patients.

Trial registration: ClinicalTrials.gov: nct00509938.

Trial registration: ClinicalTrials.gov NCT00509938.

Figures

Figure 1
Figure 1
Serum alanine aminotransferase (ALT) levels in haematopoietic stem cell transplantation (HSCT) patients. The drugs depicted in figure are the drugs used by the patient experiencing elevated transaminases. day 0 = day of haematopoietic stem cell transplantation; HDM = high-dose melphalan.

References

    1. Blijlevens NM. Implications of treatment-induced mucosal barrier injury. Curr Opin Oncol. 2005;17:605–610.
    1. Vera-Llonch M, Oster G, Ford CM, Lu J, Sonis S. Oral mucositis and outcomes of allogeneic hematopoietic stem-cell transplantation in patients with hematologic malignancies. Support Care Cancer. 2007;15:491–496. doi: 10.1007/s00520-006-0176-9.
    1. Auletta JJ, Lazarus HM. Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant. 2005;35:835–857. doi: 10.1038/sj.bmt.1704966.
    1. Gratwohl A, Brand R, Frassoni F, Rocha V, Niederwieser D, Reusser P, Einsele H, Cordonnier C. Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transplant. 2005;36:757–769. doi: 10.1038/sj.bmt.1705140.
    1. Schots R, Kaufman L, Van RI, Ben OT, De WM, Van CB, Demanet C. Proinflammatory cytokines and their role in the development of major transplant-related complications in the early phase after allogeneic bone marrow transplantation. Leukemia. 2003;17:1150–1156. doi: 10.1038/sj.leu.2402946.
    1. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6:629–640. doi: 10.1016/S1473-3099(06)70599-0.
    1. Snelders E, Lee HA van der, Kuijpers J, Rijs AJ, Varga J, Samson RA, Mellado E, Donders AR, Melchers WJ, Verweij PE. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5:e219. doi: 10.1371/journal.pmed.0050219.
    1. Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century - a clinical super-challenge. N Engl J Med. 2009;360:439–443. doi: 10.1056/NEJMp0804651.
    1. Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64:922–933. doi: 10.1007/s00018-007-6475-6.
    1. Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord. 2002;2:79–83. doi: 10.2174/1568005024605855.
    1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95. doi: 10.1038/415389a.
    1. Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969;130:643–658. doi: 10.1084/jem.130.3.643.
    1. Masson PL. An iron-binding protein common to many external secretions. Clinica Chimica Acta. 1966;14:735–739. doi: 10.1016/0009-8981(66)90004-0.
    1. Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 2005;62:2549–2559. doi: 10.1007/s00018-005-5370-2.
    1. Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62:2588–2598. doi: 10.1007/s00018-005-5373-z.
    1. Valenti P, Antonini G. Lactoferrin: an important host defence against microbial and viral attack. Cell Mol Life Sci. 2005;62:2576–2587. doi: 10.1007/s00018-005-5372-0.
    1. Ward PP, Paz E, Conneely OM. Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci. 2005;62:2540–2548. doi: 10.1007/s00018-005-5369-8.
    1. Suzuki T, Takizawa-Mizuno M, Yazaki M, Wada Y, Asai K, Kato T. Plasma lactoferrin levels after bone marrow transplantation monitored by a two-site enzyme immunoassay. Clin Chim Acta. 1991;202:111–117. doi: 10.1016/0009-8981(91)90262-B.
    1. Velden WJFM van der, Blijlevens NM, Donnelly JP. The potential role of lactoferrin and derivatives in the management of infectious and inflammatory complications of hematology patients receiving a hematopoietic stem cell transplantation. Transpl Infect Dis. 2008;10:80–89. doi: 10.1111/j.1399-3062.2007.00260.x.
    1. Faber C, Stallmann HP, Lyaruu DM, Joosten U, von EC, van Nieuw AA, Wuisman PI. Comparable efficacies of the antimicrobial peptide human lactoferrin 1-11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob Agents Chemother. 2005;49:2438–2444. doi: 10.1128/AAC.49.6.2438-2444.2005.
    1. Lupetti A, Paulusma-Annema A, Welling MM, Senesi S, Van Dissel JT, Nibbering PH. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother. 2000;44:3257–3263. doi: 10.1128/AAC.44.12.3257-3263.2000.
    1. Lupetti A, Brouwer CP, Bogaards SJ, Welling MM, de HE, Campa M, Van Dissel JT, Friesen RH, Nibbering PH. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection. J Infect Dis. 2007;196:1416–1424. doi: 10.1086/522427.
    1. Stallmann HP, Faber C, Bronckers AL, Nieuw Amerongen AV, Wuisman PI. Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11- or gentamicin-containing calcium phosphate cement. J Antimicrob Chemother. 2004;54:472–476. doi: 10.1093/jac/dkh346.
    1. Dijkshoorn L, Brouwer CP, Bogaards SJ, Nemec A, Broek PJ van den, Nibbering PH. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2004;48:4919–4921. doi: 10.1128/AAC.48.12.4919-4921.2004.
    1. World Health Organization World Health Organization International Conference on Harmonization. Topic E6: Guidelines for Good Clincial Practice US Federal Register. 1997;62:25691–25709.
    1. Cancer Therapy Evaluation Program Common Terminology Criteria for Adverse Events, Version 3.0
    1. Neuburger S, Maschmeyer G. Update on management of infections in cancer and stem cell transplant patients. Ann Hematol. 2006;85:345–356. doi: 10.1007/s00277-005-0048-2.
    1. van Berkel PH, Geerts ME, van Veen HA, Mericskay M, de Boer HA, Nuijens JH. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochem J. 1997;328:145–151.
    1. Legrand D, van Berkel PH, Salmon V, van Veen HA, Slomianny MC, Nuijens JH, Spik G. The N-terminal Arg2, Arg3 and Arg4 of human lactoferrin interact with sulphated molecules but not with the receptor present on Jurkat human lymphoblastic T-cells. Biochem J. 1997;327:841–846.
    1. Ellison RT., III The effects of lactoferrin on Gram-negative bacteria. Adv Exp Med Biol. 1994;357:71–90.
    1. Wakabayashi H, Takakura N, Teraguchi S, Tamura Y. Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated Candida albicans. Microbiol Immunol. 2003;47:37–43.
    1. Miyauchi H, Hashimoto S, Nakajima M, Shinoda I, Fukuwatari Y, Hayasawa H. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell Immunol. 1998;187:34–37. doi: 10.1006/cimm.1997.1246.
    1. Szuster-Ciesielska A, Kaminska T, Kandefer-Szerszen M. Phagocytosis-enhancing effect of lactoferrin on bovine peripheral blood monocytes in vitro and in vivo. Arch Vet Pol. 1995;35:63–71.
    1. Legrand D, Elass E, Carpentier M, Mazurier J. Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol. 2006;84:282–290. doi: 10.1139/O06-045.
    1. Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun. 1998;66:486–491.
    1. Haversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I. Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol. 2002;220:83–95. doi: 10.1016/S0008-8749(03)00006-6.
    1. Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA, van Berkel PH, Pauwels EK, Nuijens JH. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun. 2001;69:1469–1476. doi: 10.1128/IAI.69.3.1469-1476.2001.
    1. Lupetti A, Paulusma-Annema A, Welling MM, Dogterom-Ballering H, Brouwer CP, Senesi S, Van Dissel JT, Nibbering PH. Synergistic activity of the N-terminal peptide of human lactoferrin and fluconazole against Candida species. Antimicrob Agents Chemother. 2003;47:262–267. doi: 10.1128/AAC.47.1.262-267.2003.
    1. Stallmann HP, Faber C, Bronckers AL, de Blieck-Hogervorst JM, Brouwer CP, Amerongen AV, Wuisman PI. Histatin and lactoferrin derived peptides: antimicrobial properties and effects on mammalian cells. Peptides. 2005;26:2355–2359. doi: 10.1016/j.peptides.2005.05.014.
    1. Melo MN, Ferre R, Castanho MA. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol. 2009;7:245–250. doi: 10.1038/nrmicro2095.
    1. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–854. doi: 10.1002/1097-0142(197509)36:3<842::AID-CNCR2820360303>;2-U.
    1. Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G, Gertz M, Giralt S, Jagannath S, Vesole D. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol. 1998;102:1115–1123. doi: 10.1046/j.1365-2141.1998.00930.x.

Source: PubMed

3
Abonner