The effect of assessing genetic risk of prostate cancer on the use of PSA tests in primary care: A cluster randomized controlled trial

Jacob Fredsøe, Jan Koetsenruyter, Peter Vedsted, Pia Kirkegaard, Michael Væth, Adrian Edwards, Torben F Ørntoft, Karina D Sørensen, Flemming Bro, Jacob Fredsøe, Jan Koetsenruyter, Peter Vedsted, Pia Kirkegaard, Michael Væth, Adrian Edwards, Torben F Ørntoft, Karina D Sørensen, Flemming Bro

Abstract

Background: Assessing genetic lifetime risk for prostate cancer has been proposed as a means of risk stratification to identify those for whom prostate-specific antigen (PSA) testing is likely to be most valuable. This project aimed to test the effect of introducing a genetic test for lifetime risk of prostate cancer in general practice on future PSA testing.

Methods and findings: We performed a cluster randomized controlled trial with randomization at the level of general practices (73 in each of two arms) in the Central Region (Region Midtjylland) of Denmark. In intervention practices, men were offered a genetic test (based on genotyping of 33 risk-associated single nucleotide polymorphisms) in addition to the standard PSA test that informed them about lifetime genetic risk of prostate cancer and distinguished between "normal" and "high" risk. The primary outcome was the proportion of men having a repeated PSA test within 2 years. A multilevel logistic regression model was used to test the association. After applying the exclusion criteria, 3,558 men were recruited in intervention practices, with 1,235 (34.7%) receiving the genetic test, and 4,242 men were recruited in control practices. Men with high genetic risk had a higher propensity for repeated PSA testing within 2 years than men with normal genetic risk (odds ratio [OR] = 8.94, p < 0.01). The study was conducted in routine practice and had some selection bias, which is evidenced by the relatively large proportion of younger and higher income participants taking the genetic test.

Conclusions: Providing general practitioners (GPs) with access to a genetic test to assess lifetime risk of prostate cancer did not reduce the overall number of future PSA tests. However, among men who had a genetic test, knowledge of genetic risk significantly influenced future PSA testing.

Trial registration: This study is registered with ClinicalTrials.gov, number NCT01739062.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flowchart.
Fig 1. Flowchart.
GP, general practitioner; PSA, prostate-specific antigen.

References

    1. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371(9625):1710–21. Epub 2008/05/20. 10.1016/S0140-6736(08)60729-1 .
    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. Epub 2005/03/12. 10.3322/canjclin.55.2.74 .
    1. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Zappa M, Nelen V, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384(9959):2027–35. Epub 2014/08/12. 10.1016/S0140-6736(14)60525-0
    1. Moyer VA, Force USPST. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157(2):120–34. Epub 2012/07/18. 10.7326/0003-4819-157-2-201207170-00459 .
    1. Zhu X, Albertsen PC, Andriole GL, Roobol MJ, Schroder FH, Vickers AJ. Risk-based prostate cancer screening. Eur Urol. 2012;61(4):652–61. Epub 2011/12/03. 10.1016/j.eururo.2011.11.029
    1. Hjertholm P, Fenger-Gron M, Vestergaard M, Christensen MB, Borre M, Moller H, et al. Variation in general practice prostate-specific antigen testing and prostate cancer outcomes: an ecological study. Int J Cancer. 2015;136(2):435–42. Epub 2014/06/07. 10.1002/ijc.29008 .
    1. Arnsrud Godtman R, Holmberg E, Lilja H, Stranne J, Hugosson J. Opportunistic testing versus organized prostate-specific antigen screening: outcome after 18 years in the Goteborg randomized population-based prostate cancer screening trial. Eur Urol. 2015;68(3):354–60. Epub 2015/01/06. 10.1016/j.eururo.2014.12.006 .
    1. Neal DE. PSA testing for prostate cancer improves survival—but can we do better? Lancet Oncol. 2010;11(8):702–3. Epub 2010/07/06. 10.1016/S1470-2045(10)70152-2 .
    1. Wolf AM, Wender RC, Etzioni RB, Thompson IM, D’Amico AV, Volk RJ, et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin. 2010;60(2):70–98. Epub 2010/03/05. 10.3322/caac.20066 .
    1. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet. 2013;45(4):385–91, 91e1–2. Epub 2013/03/29. 10.1038/ng.2560
    1. Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46(10):1103–9. Epub 2014/09/15. 10.1038/ng.3094
    1. Dadaev T, Saunders EJ, Newcombe PJ, Anokian E, Leongamornlert DA, Brook MN, et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat Commun. 2018;9(1):2256 Epub 2018/06/13. 10.1038/s41467-018-04109-8
    1. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36. Epub 2018/06/13. 10.1038/s41588-018-0142-8
    1. Matejcic M, Saunders EJ, Dadaev T, Brook MN, Wang K, Sheng X, et al. Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nat Commun. 2018;9(1):4616 Epub 2018/11/07. 10.1038/s41467-018-06863-1
    1. Aly M, Wiklund F, Xu J, Isaacs WB, Eklund M, D’Amato M, et al. Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study. Eur Urol. 2011;60(1):21 Epub 2011/02/08. 10.1016/j.eururo.2011.01.017
    1. Gronberg H, Adolfsson J, Aly M, Nordstrom T, Wiklund P, Brandberg Y, et al. Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncol. 2015;16(16):1667–76. Epub 2015/11/14. 10.1016/S1470-2045(15)00361-7 .
    1. Kirkegaard P, Vedsted P, Edwards A, Fenger-Gron M, Bro F. A cluster-randomised, parallel group, controlled intervention study of genetic prostate cancer risk assessment and use of PSA tests in general practice—the ProCaRis study: study protocol. BMJ Open. 2013;3(3). Epub 2013/03/05. 10.1136/bmjopen-2012-002452
    1. Pedersen KM, Andersen JS, Sondergaard J. General practice and primary health care in Denmark. J Am Board Fam Med. 2012;25 Suppl 1:S34–8. Epub 2012/03/21. 10.3122/jabfm.2012.02.110216 .
    1. Schmidt M, Pedersen L, Sorensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541–9. Epub 2014/06/27. 10.1007/s10654-014-9930-3 .
    1. Hansen BL, Lose G, McNair SB, S. W. Udredning og behandling af nedre urinvejssymptomer hos mænd og kvinder. 1st ed Copenhagen, Denmark: Dansk Selskab for Almen Medicin; 2009.
    1. DAPROCA. Kliniske retningslinjer 2018 [cited 2019]. .
    1. Boesen L, Norgaard N, Logager V, Balslev I, Bisbjerg R, Thestrup KC, et al. Assessment of the Diagnostic Accuracy of Biparametric Magnetic Resonance Imaging for Prostate Cancer in Biopsy-Naive Men: The Biparametric MRI for Detection of Prostate Cancer (BIDOC) Study. JAMA Netw Open. 2018;1(2):e180219 Epub 2019/01/16. 10.1001/jamanetworkopen.2018.0219
    1. American Cancer Society. [cited 2019 Oct]. Key Statistics for Prostate Cancer. .
    1. Albright F, Stephenson RA, Agarwal N, Teerlink CC, Lowrance WT, Farnham JM, et al. Prostate cancer risk prediction based on complete prostate cancer family history. Prostate. 2015;75(4):390–8. Epub 2014/11/20. 10.1002/pros.22925
    1. Kobayashi D, Takahashi O, Fukui T, Glasziou PP. Optimal prostate-specific antigen screening interval for prostate cancer. Ann Oncol. 2012;23(5):1250–3. Epub 2011/09/29. 10.1093/annonc/mdr413 .
    1. Barry MJ. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med. 2001;344(18):1373–7. Epub 2001/05/03. 10.1056/NEJM200105033441806 .
    1. Jensen VM, Rasmussen AW. Danish Education Registers. Scand J Public Health. 2011;39(7 Suppl):91–4. Epub 2011/08/04. 10.1177/1403494810394715 .
    1. Royston P, White I. Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J Stat Softw. 2011. 10.18637/jss.v045.i04
    1. Shao YH, Albertsen PC, Shih W, Roberts CB, Lu-Yao GL. The impact of PSA testing frequency on prostate cancer incidence and treatment in older men. Prostate Cancer Prostatic Dis. 2011;14(4):332–9. Epub 2011/06/29. 10.1038/pcan.2011.29
    1. Stacey D, Legare F, Col NF, Bennett CL, Barry MJ, Eden KB, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev. 2014;(1):CD001431 Epub 2014/01/29. 10.1002/14651858.CD001431.pub4 .
    1. Volk RJ, Hawley ST, Kneuper S, Holden EW, Stroud LA, Cooper CP, et al. Trials of decision aids for prostate cancer screening: a systematic review. Am J Prev Med. 2007;33(5):428–34. Epub 2007/10/24. 10.1016/j.amepre.2007.07.030 .
    1. Emery J, Morris H, Goodchild R, Fanshawe T, Prevost AT, Bobrow M, et al. The GRAIDS Trial: a cluster randomised controlled trial of computer decision support for the management of familial cancer risk in primary care. Br J Cancer. 2007;97(4):486–93. Epub 2007/08/19. 10.1038/sj.bjc.6603897
    1. Allen JD, Othus MK, Hart A Jr., Mohllajee AP, Li Y, Bowen D. Do men make informed decisions about prostate cancer screening? Baseline results from the "take the wheel" trial. Med Decis Making. 2011;31(1):108–20. Epub 2010/05/21. 10.1177/0272989X10369002
    1. Evans R, Edwards AG, Elwyn G, Watson E, Grol R, Brett J, et al. "It’s a maybe test": men’s experiences of prostate specific antigen testing in primary care. Br J Gen Pract. 2007;57(537):303–10. Epub 2007/03/31.
    1. Pickles K, Carter SM, Rychetnik L, McCaffery K, Entwistle VA. General Practitioners’ Experiences of, and Responses to, Uncertainty in Prostate Cancer Screening: Insights from a Qualitative Study. PLoS ONE. 2016;11(4):e0153299 Epub 2016/04/23. 10.1371/journal.pone.0153299
    1. Ranasinghe WK, Kim SP, Papa NP, Sengupta S, Frydenberg M, Bolton D, et al. Prostate cancer screening in Primary Health Care: the current state of affairs. Springerplus. 2015;4:78 Epub 2015/02/26. 10.1186/s40064-015-0819-8
    1. Bloss CS, Schork NJ, Topol EJ. Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med. 2011;364(6):524–34. Epub 2011/01/14. 10.1056/NEJMoa1011893

Source: PubMed

3
Abonner