An integrated population pharmacokinetic meta-analysis of propofol in morbidly obese and nonobese adults, adolescents, and children

J Diepstraten, V Chidambaran, S Sadhasivam, H J Blussé van Oud-Alblas, T Inge, B van Ramshorst, E P A van Dongen, A A Vinks, C A J Knibbe, J Diepstraten, V Chidambaran, S Sadhasivam, H J Blussé van Oud-Alblas, T Inge, B van Ramshorst, E P A van Dongen, A A Vinks, C A J Knibbe

Abstract

This study describes a population pharmacokinetic meta-analysis of propofol to characterize the influence of body size measures and age in morbidly obese and nonobese adults, adolescents, and children. Sixty morbidly obese and nonobese adult patients (55-167 kg; 21-79 years) and 34 morbidly obese and nonobese adolescents and children (37-184 kg; 9-20 years) were included. The results show that clearance increased with total body weight in an allometric function while age was found to influence clearance in a bilinear fashion with two distinct slopes, reflecting an initial increase and subsequent decrease as a result of aging. Using these two functions, the influence of both (over)weight and age on propofol clearance was well characterized, which may provide a basis for dosing across this diverse group of patients.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e73; doi:10.1038/psp.2013.47; advance online publication 11 September 2013.

Figures

Figure 1
Figure 1
Individual post hoc propofol clearance estimates vs. total body weight for the simple model (model A) and three covariate pharmacokinetic models (B, C, and D) for morbidly obese adults (black circles), adolescents and children (gray circles) and their nonobese controls (n = 94). In model B, the black line indicates the population clearance values for both the adult and adolescent population; in model C, the black line indicates the population clearance values for adults and the gray line the population clearance values for adolescents; and in model D, the black dotted lines indicate the population clearance values for 15, 41, and 65 years.
Figure 2
Figure 2
Interindividual variability of propofol clearance vs. age for the simple model without covariates (model A) and the final covariate model including age and total body weight on propofol clearance (model E).
Figure 3
Figure 3
Observed vs. population-predicted ln propofol concentrations of the final model (model E). Panels represent data of morbidly obese adults, nonobese adults, morbidly obese children and adolescents, and nonobese children and adolescents. The solid gray line represents the line of identity, x = y.
Figure 4
Figure 4
Model-based predictions of population clearance estimates of propofol vs. age for patients with different total body weights.

References

    1. Ogden C.L., Carroll M.D., Curtin L.R., Lamb M.M., Flegal K.M. Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA. 2010;303:242–249.
    1. Eleveld D.J., Proost J.H., Absalom A.R., Struys M.M. Obesity and allometric scaling of pharmacokinetics. Clin. Pharmacokinet. 2011;50:751–753; discussion 755.
    1. Han P.Y., Duffull S.B., Kirkpatrick C.M., Green B. Dosing in obesity: a simple solution to a big problem. Clin. Pharmacol. Ther. 2007;82:505–508.
    1. Wang C., et al. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm. Res. 2012;29:1570–1581.
    1. Cortínez L.I., et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br. J. Anaesth. 2010;105:448–456.
    1. van Kralingen S., et al. Population pharmacokinetics and pharmacodynamics of propofol in morbidly obese patients. Clin. Pharmacokinet. 2011;50:739–750.
    1. Diepstraten J., et al. Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin. Pharmacokinet. 2012;51:543–551.
    1. Pai M.P., Paloucek F.P. The origin of the “ideal” body weight equations. Ann. Pharmacother. 2000;34:1066–1069.
    1. Janmahasatian S., Duffull S.B., Ash S., Ward L.C., Byrne N.M., Green B. Quantification of lean bodyweight. Clin. Pharmacokinet. 2005;44:1051–1065.
    1. Peters A.M., Snelling H.L., Glass D.M., Bird N.J. Estimation of lean body mass in children. Br. J. Anaesth. 2011;106:719–723.
    1. Savic R.M., Karlsson M.O. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11:558–569.
    1. Anderson B.J., Holford N.H. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu. Rev. Pharmacol. Toxicol. 2008;48:303–332.
    1. Schüttler J., Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology. 2000;92:727–738.
    1. Servin F., Farinotti R., Haberer J.P., Desmonts J.M. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide. A clinical and pharmacokinetic study. Anesthesiology. 1993;78:657–665.
    1. Ingrande J., Brodsky J.B., Lemmens H.J. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth. Analg. 2011;113:57–62.
    1. Olutoye O.A., et al. The effect of obesity on the ED(95) of propofol for loss of consciousness in children and adolescents. Anesth. Analg. 2012;115:147–153.
    1. Adams J.P., Murphy P.G. Obesity in anaesthesia and intensive care. Br. J. Anaesth. 2000;85:91–108.
    1. Wellen K.E., Hotamisligil G.S. Inflammation, stress, and diabetes. J. Clin. Invest. 2005;115:1111–1119.
    1. Guzzaloni G., Grugni G., Minocci A., Moro D., Morabito F. Liver steatosis in juvenile obesity: correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test. Int. J. Obes. Relat. Metab. Disord. 2000;24:772–776.
    1. Farrell G.C., Teoh N.C., McCuskey R.S. Hepatic microcirculation in fatty liver disease. Anat. Rec. (Hoboken) 2008;291:684–692.
    1. Casati A., Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J. Clin. Anesth. 2005;17:134–145.
    1. Al-Jahdari W.S., Yamamoto K., Hiraoka H., Nakamura K., Goto F., Horiuchi R. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. Eur. J. Clin. Pharmacol. 2006;62:527–533.
    1. Kiang T.K., Ensom M.H., Chang T.K. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther. 2005;106:97–132.
    1. Abernethy D.R., Divoll M., Greenblatt D.J., Ameer B. Obesity, sex, and acetaminophen disposition. Clin. Pharmacol. Ther. 1982;31:783–790.
    1. Van Wart S., et al. Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Antimicrob. Agents Chemother. 2004;48:4766–4777.
    1. Abernethy D.R., Greenblatt D.J., Divoll M., Shader R.I. Enhanced glucuronide conjugation of drugs in obesity: studies of lorazepam, oxazepam, and acetaminophen. J. Lab. Clin. Med. 1983;101:873–880.
    1. Sparreboom A., et al. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J. Clin. Oncol. 2007;25:4707–4713.
    1. Schwartz A.E., Matteo R.S., Ornstein E., Young W.L., Myers K.J. Pharmacokinetics of sufentanil in obese patients. Anesth. Analg. 1991;73:790–793.
    1. Barshop N.J., Capparelli E.V., Sirlin C.B., Schwimmer J.B., Lavine J.E. Acetaminophen pharmacokinetics in children with nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 2011;52:198–202.
    1. Knibbe C.A., et al. Pharmacokinetics, induction of anaesthesia and safety characteristics of propofol 6% SAZN vs propofol 1% SAZN and Diprivan-10 after bolus injection. Br. J. Clin. Pharmacol. 1999;47:653–660.
    1. Knibbe C.A., Zuideveld K.P., DeJongh J., Kuks P.F., Aarts L.P., Danhof M. Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: a comparison between propofol 6% and propofol 1%. Clin. Pharmacol. Ther. 2002;72:670–684.
    1. Peeters M.Y., et al. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin. Pharmacokinet. 2010;49:269–275.
    1. Beal S.L., Sheiner L.B., Boeckmann A. NONMEM User's Guide. University of California; San Francisco; 1999.
    1. Karlsson M.O., Savic R.M. Diagnosing model diagnostics. Clin. Pharmacol. Ther. 2007;82:17–20.
    1. Jonsson E.N., Karlsson M.O. Automated covariate model building within NONMEM. Pharm. Res. 1998;15:1463–1468.

Source: PubMed

3
Abonner