Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog

Paul B Yoo, Haoran Liu, Juan G Hincapie, Stephen B Ruble, Jason J Hamann, Warren M Grill, Paul B Yoo, Haoran Liu, Juan G Hincapie, Stephen B Ruble, Jason J Hamann, Warren M Grill

Abstract

Despite current knowledge of the myriad physiological effects of vagus nerve stimulation (VNS) in various mammalian species (including humans), the impact of varying stimulation parameters on nerve recruitment and physiological responses is not well understood. We investigated nerve recruitment, cardiovascular responses, and skeletal muscle responses to different temporal patterns of VNS across 39 combinations of stimulation amplitude, frequency, and number of pulses per burst. Anesthetized dogs were implanted with stimulating and recording cuff electrodes around the cervical vagus nerve, whereas laryngeal electromyogram (EMG) and heart rate were recorded. In seven of eight dogs, VNS-evoked bradycardia (defined as ≥10% decrease in heart rate) was achieved by applying stimuli at amplitudes equal to or greater than the threshold for activating slow B-fibers. Temporally patterned VNS (minimum 5 pulses per burst) was sufficient to elicit bradycardia while reducing the concomitant activation of laryngeal muscles by more than 50%. Temporal patterns of VNS can be used to modulate heart rate while minimizing laryngeal motor fiber activation, and this is a novel approach to reduce the side effects produced by VNS.

Keywords: Bradycardia; dog; heart failure; neuromodulation therapy; temporal patterned stimulation; vagus nerve stimulation.

© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Figures

Figure 1
Figure 1
Temporally patterned vagus nerve stimulation (IPI = interpulse interval = frequency−1, IBI = interburst interval).
Figure 2
Figure 2
Sample data of electrically evoked signals from (A) the ipsilateral vagus nerve and (B) the laryngeal muscle. The recorded compound nerve action potential signal shows orderly recruitment of large diameter A fibers (1 –1.5 mA), B fibers (2 mA), and slow B‐fibers (5 mA, labeled as Bs). According to our previous study, this corresponded to conduction velocities of 38.8 ± 4.8 m/sec (A‐Fiber), 18.0 ± 4.7 m/sec (fast B‐fiber), and 10.5 ± 1.9 m/sec (slow B‐fiber). The laryngeal electromyogram shows the corresponding threshold activation of motor fibers at approximately 1.1 mA (arrow), and maximum muscle fiber recruitment at 1.5 mA.
Figure 3
Figure 3
Continuous electrical stimulation of the right vagus nerve in anesthetized dogs (duration = 20‐sec, frequency = 20 Hz). (A) Response curve obtained from a single experiment, where the normalized heart rate was plotted against the stimulation amplitude. The bradycardia threshold (BCT) was 2 mA. (B) Electrical stimulation at 4 mA resulted in significant bradycardia (electrocardiogram, EKG), and correspondingly evoked neural (ENG) and muscle (laryngeal EMG) responses. (C) Zoomed image of the first electrical pulse shows the short‐latency ENG (1.8 msec) and longer‐latency EMG (9.5 msec) signals, which were repeated throughout the 20 sec of stimulation. [abscissa units: |EKG| ≤ 2.5 V, |ENG| ≤7.5 mV, and |Laryngeal EMG| ≤7.5 mV].
Figure 4
Figure 4
Activation thresholds of nerves fibers in the vagus nerve (n = 8 dogs) and bradycardia (BC) threshold. The bradycardia threshold coincided with the slow‐B fiber threshold. This relationship suggests that VNS‐evoked bradycardia is a result of the activation of this group of small, myelinated B‐fibers (*P ≤ 0.001).
Figure 5
Figure 5
Characteristic cardiac effects of VNS (50 Hz, 20 pulses per burst, 5 mA – above bradycardia threshold). Stimulation pattern, electrocardiogram (EKG), and arterial blood pressure (ABP).
Figure 6
Figure 6
Continuous electrical stimulation of the (A) intact and (C) distal stump of the transected cervical vagus nerve both resulted in acute asystole (above BCT, 20 Hz). During stimulation‐evoked asystole, ventricular escape beats were commonly observed, as shown in panel C. In contrast, electrical stimulation of the (B) proximal stump of the transected cervical vagus nerve did not elicit any changes in cardiac function. [units per division: time (4 sec), ECG (1.5 V), left ventricular pressure (62.5 mmHg), arterial blood pressure (25 mmHg)].

References

    1. Agnew, W. F. , McCreery D. B., Yuen T. G., and Bullara L. A.. 1989. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann. Biomed. Eng. 17:39–60.
    1. Agostoni, E. , Chinnock J. E., De Daly M. B., and Murray J. G.. 1957. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. 135:182–205.
    1. Anholt, T. A. , Ayal S., and Goldberg J. A.. 2011. Recruitment and blocking properties of the CardioFit stimulation lead. J. Neural Eng. 8:034004.
    1. Bhadra, N. , Kilgore K., and Gustafson K. J.. 2006. High frequency electrical conduction block of the pudendal nerve. J. Neural Eng. 3:180–187.
    1. Birmingham, K. , Gradinaru V., Anikeeva P., Grill W. M., Pikov V., McLaughlin B., et al. 2014. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13:399–400.
    1. Branner, A. , Stein R. B., and Normann R. A.. 2001. Selective stimulation of cat sciatic nerve using an array of varying‐length microelectrodes. J. Neurophysiol. 85:1585–1594.
    1. Braund, K. G. , Steiss J. E., Marshall A. E., Mehta J. R., Toivio‐Kinnucan M., and Amling K. A.. 1988. Morphologic and morphometric studies of the vagus and recurrent laryngeal nerves in clinically normal adult dogs. Am. J. Vet. Res. 49:2111–2116.
    1. Buschman, H. P. , Storm C. J., Duncker D. J., Verdouw P. D., van der Aa H. E., and van der Kemp P.. 2006. Heart rate control via vagus nerve stimulation. Neuromodulation 9:214–220.
    1. Carlsten, A. , Folkow B., and Hamberger C. A.. 1957. Cardiovascular effects of direct vagal stimulation in man. Acta Physiol. Scand. 41:68–76.
    1. Castoro, M. A. , Yoo P. B., Hincapie J. G., Hamann J. J., Ruble S. B., Wolf P. D., et al. 2011. Excitation properties of the right cervical vagus nerve in adult dogs. Exp. Neurol. 227:62–68.
    1. Cristancho, P. , Cristancho M. A., Baltuch G. H., Thase M. E., and O'Reardon J. P.. 2011. Effectiveness and safety of vagus nerve stimulation for severe treatment‐resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J. Clin. Psychiatry 72:1376–1382.
    1. De Ferrari, G. M. , Crijns H. J., Borggrefe M., Milasinovic G., Smid J., Zabel M., et al. 2011. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32:847–855.
    1. De Ferrari, G. M. , Tuinenburg A. E., Ruble S., Brugada J., Klein H., Butter C., et al. 2014. Rationale and study design of the NEuroCardiac TherApy foR Heart Failure Study: NECTAR‐HF. Eur. J. Heart Fail. 16:692–699.
    1. Dicarlo, L. , Libbus I., Amurthur B., Kenknight B. H., and Anand I. S.. 2013. Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM‐HF study. J. Card. Fail. 19:655–660.
    1. Engineer, N. D. , Riley J. R., Seale J. D., Vrana W. A., Shetake J. A., Sudanagunta S. P., et al. 2011. Reversing pathological neural activity using targeted plasticity. Nature 470:101–104.
    1. Evans, D. H. , and Murray J. G.. 1954. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. 88:320–337.
    1. Fang, Z. P. , and Mortimer J. T.. 1991. Selective activation of small motor axons by quasi‐trapezoidal current pulses. IEEE Trans. Biomed. Eng. 38:168–174.
    1. Groves, D. A. , and Brown V. J.. 2005. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29:493–500.
    1. Hamann, J. J. , Ruble S. B., Stolen C., Wang M., Gupta R. C., Rastogi S., et al. 2013. Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur. J. Heart Fail. 15:1319–1326.
    1. Handforth, A. , DeGiorgio C. M., Schachter S. C., Uthman B. M., Naritoku D. K., Tecoma E. S., et al. 1998. Vagus nerve stimulation therapy for partial‐onset seizures: a randomized active‐control trial. Neurology 51:48–55.
    1. Hauptman, P. J. , Schwartz P. J., Gold M. R., Borggrefe M., Van Veldhuisen D. J., Starling R. C., et al. 2012. Rationale and study design of the increase of vagal tone in heart failure study: INOVATE‐HF. Am. Heart J. 163:954–62 e1.
    1. Hoffman, H. H. , and Kuntz A.. 1957. Vagus nerve components. Anat. Rec. 127:551–567.
    1. Hoffman, H. H. , and Schnitzlein H. N.. 1961. The numbers of nerve fibers in the vagus nerve of man. Anat. Rec. 139:429–435.
    1. Kimura, T. , Uchida W., and Satoh S.. 1985. Predominance of postsynaptic mechanism in vagal suppression of sympathetic tachycardia in the dog. J. Pharmacol. Exp. Ther. 235:793–797.
    1. Kirchner, A. , Birklein F., Stefan H., and Handwerker H. O.. 2000. Left vagus nerve stimulation suppresses experimentally induced pain. Neurology 55:1167–1171.
    1. Kundu, A. , Harreby K. R., Yoshida K., Boretius T., Stieglitz T., and Jensen W.. 2014. Stimulation selectivity of the “thin‐film longitudinal intrafascicular electrode” (tfLIFE) and the “transverse intrafascicular multi‐channel electrode” (TIME) in the large nerve animal model. IEEE Trans. Neural Syst. Rehabil. Eng. 22:400–410.
    1. Lertmanorat, Z. , and Durand D. M.. 2004. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study. J. Neural Eng. 1:202–211.
    1. Levy, M. N. , Martin P. J., Lano T., and Zieske H.. 1969. Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res. 25:303–314.
    1. Levy, M. N. , Iano T., and Zieske H.. 1972. Effects of repetitive bursts of vagal activity on heart rate. Circ. Res. 30:186–195.
    1. Li, M. , Zheng C., Sato T., Kawada T., Sugimachi M., and Sunagawa K.. 2004. Vagal nerve stimulation markedly improves long‐term survival after chronic heart failure in rats. Circulation 109:120–124.
    1. Onkka, P. , Maskoun W., Rhee K. S., Hellyer J., Patel J., Tan J., et al. 2013. Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: localization and quantitation. Heart Rhythm 10:585–591.
    1. Parker, P. , Celler B. G., Potter E. K., and McCloskey D. I.. 1984. Vagal stimulation and cardiac slowing. J. Auton. Nerv. Syst. 11:226–231.
    1. Premchand, R. K. , Sharma K., Mittal S., Monteiro R., Dixit S., Libbus I., et al. 2014. autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM‐HF trial. J. Card. Fail. 20:808–816.
    1. Ramsay, R. E. , Uthman B. M., Augustinsson L. E., Upton A. R., Naritoku D., Willis J., et al. 1994. Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. First International Vagus Nerve Stimulation Study Group. Epilepsia 35:627–636.
    1. Rousselet, L. , Le Rolle V., Ojeda D., Guiraud D., Hagege A., Bel A., et al. 2014. Influence of Vagus Nerve Stimulation parameters on chronotropism and inotropism in heart failure. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014:526–529.
    1. Sabbah, H. N. , Ilsar I., Zaretsky A., Rastogi S., Wang M., and Gupta R. C.. 2011. Vagus nerve stimulation in experimental heart failure. Heart Fail. Rev. 16:171–178.
    1. Sackeim, H. A. , Rush A. J., George M. S., Marangell L. B., Husain M. M., Nahas Z., et al. 2001. Vagus nerve stimulation (VNS) for treatment‐resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25:713–728.
    1. Satchell, P. M. , McLeod J. G., Harper B., and Goodman A. H.. 1982. Abnormalities in the vagus nerve in canine acrylamide neuropathy. J. Neurol. Neurosurg. Psychiatry 45:609–619.
    1. Schwartz, P. J. , and De Ferrari G. M.. 2009. Vagal stimulation for heart failure: background and first in‐man study. Heart Rhythm 6(11 Suppl):S76–S81.
    1. Schwartz, P. J. , De Ferrari G. M., Sanzo A., Landolina M., Rordorf R., Raineri C., et al. 2008. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur. J. Heart Fail. 10:884–891.
    1. Sweeney, J. D. , and Mortimer J. T.. 1986. An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials. IEEE Trans. Biomed. Eng. 33:541–549.
    1. Thompson, G. W. , Levett J. M., Miller S. M., Hill M. R., Meffert W. G., Kolata R. J., et al. 1998. Bradycardia induced by intravascular versus direct stimulation of the vagus nerve. Ann. Thorac. Surg. 65:637–642.
    1. Tosato, M. , Yoshida K., Toft E., Nekrasas V., and Struijk J. J.. 2006. Closed‐loop control of the heart rate by electrical stimulation of the vagus nerve. Med. Biol. Eng. Comput. 44:161–169.
    1. Woodbury, D. M. , and Woodbury J. W.. 1990. Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 31(Suppl. 2):S7–S19.
    1. Yoo, P. B. , Sahin M., and Durand D. M.. 2004. Selective stimulation of the canine hypoglossal nerve using a multi‐contact cuff electrode. Ann. Biomed. Eng. 32:511–519.
    1. Yoo, P. B. , Hincapie J. G., Hamann J. J., Ruble S. B., Wolf P. D., and Grill W. M.. 2011. Selective control of physiological responses by temporally‐patterned electrical stimulation of the canine vagus nerve. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011:3107–3110.
    1. Yoo, P. B. , Lubock N. B., Hincapie J. G., Ruble S. B., Hamann J. J., and Grill W. M.. 2013. High‐resolution measurement of electrically‐evoked vagus nerve activity in the anesthetized dog. J. Neural Eng. 10:026003.
    1. Zannad, F. , De Ferrari G. M., Tuinenburg A. E., Wright D., Brugada J., Butter C., et al. 2015. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR‐HF) randomized controlled trial. Eur. Heart J. 36:425–433.
    1. Zhang, Y. , Mowrey K. A., Zhuang S., Wallick D. W., Popovic Z. B., and Mazgalev T. N.. 2002. Optimal ventricular rate slowing during atrial fibrillation by feedback AV nodal‐selective vagal stimulation. Am. J. Physiol. Heart Circ. Physiol. 282:H1102–H1110.
    1. Zhang, Y. , Popovic Z. B., Bibevski S., Fakhry I., Sica D. A., Van Wagoner D. R., et al. 2009. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high‐rate pacing model. Circ. Heart Fail. 2:692–699.

Source: PubMed

3
Abonner