Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model

Huan Wang, Qin-Yu Zhao, Jing-Chao Luo, Kai Liu, Shen-Ji Yu, Jie-Fei Ma, Ming-Hao Luo, Guang-Wei Hao, Ying Su, Yi-Jie Zhang, Guo-Wei Tu, Zhe Luo, Huan Wang, Qin-Yu Zhao, Jing-Chao Luo, Kai Liu, Shen-Ji Yu, Jie-Fei Ma, Ming-Hao Luo, Guang-Wei Hao, Ying Su, Yi-Jie Zhang, Guo-Wei Tu, Zhe Luo

Abstract

Background: Noninvasive ventilation (NIV) has been widely used in critically ill patients after extubation. However, NIV failure is associated with poor outcomes. This study aimed to determine early predictors of NIV failure and to construct an accurate machine-learning model to identify patients at risks of NIV failure after extubation in intensive care units (ICUs).

Methods: Patients who underwent NIV after extubation in the eICU Collaborative Research Database (eICU-CRD) were included. NIV failure was defined as need for invasive ventilatory support (reintubation or tracheotomy) or death after NIV initiation. A total of 93 clinical and laboratory variables were assessed, and the recursive feature elimination algorithm was used to select key features. Hyperparameter optimization was conducted with an automated machine-learning toolkit called Neural Network Intelligence. A machine-learning model called Categorical Boosting (CatBoost) was developed and compared with nine other models. The model was then prospectively validated among patients enrolled in the Cardiac Surgical ICU of Zhongshan Hospital, Fudan University.

Results: Of 929 patients included in the eICU-CRD cohort, 248 (26.7%) had NIV failure. The time from extubation to NIV, age, Glasgow Coma Scale (GCS) score, heart rate, respiratory rate, mean blood pressure (MBP), saturation of pulse oxygen (SpO2), temperature, glucose, pH, pressure of oxygen in blood (PaO2), urine output, input volume, ventilation duration, and mean airway pressure were selected. After hyperparameter optimization, our model showed the greatest accuracy in predicting NIV failure (AUROC: 0.872 [95% CI 0.82-0.92]) among all predictive methods in an internal validation. In the prospective validation cohort, our model was also superior (AUROC: 0.846 [95% CI 0.80-0.89]). The sensitivity and specificity in the prediction group is 89% and 75%, while in the validation group they are 90% and 70%. MV duration and respiratory rate were the most important features. Additionally, we developed a web-based tool to help clinicians use our model.

Conclusions: This study developed and prospectively validated the CatBoost model, which can be used to identify patients who are at risk of NIV failure. Thus, those patients might benefit from early triage and more intensive monitoring.

Trial registration: NCT03704324. Registered 1 September 2018, https://register.

Clinicaltrials: gov .

Keywords: Categorical Boosting; Hyperparameter optimization; Non-invasive mechanical ventilation failure; Prospective validation; Recursive feature elimination.

Conflict of interest statement

The authors have no conflict of interests to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart of patient selection. eICU-CRD, eICU Collaborative Research Database; ICU, intensive care unit
Fig. 2
Fig. 2
Schematic illustration of the study design. A Patients with NIV initiated within 48 h after extubation in the eICU Collaborative Research Database were included in the study, and 93 variables were extracted. The dataset was divided into a training set (70%) and internal validation set (30%). B The recursive feature elimination algorithms were performed on the training set, and key features were selected. C Hyperparameters was optimized by using an automated machine learning toolkit on the training set. D The developed CatBoost model outperformed other models in both the internal validation and prospective validation sets
Fig. 3
Fig. 3
Hyperparameter optimization process with an automated machine learning toolkit. A The blue point represents the result of a trail, and the dark orange line represents the best area under the receiver operating characteristic curve (AUROC). B Each line represents a trail, and the green to red color line represents its AUROC
Fig. 4
Fig. 4
Comparison of the full and compact CatBoost models. The full model was developed on the basis of all available features, whereas the compact model was derived on the basis of key features selected by the recursive feature elimination algorithm. Both models had optimized hyperparameters. A Receiver operating characteristic curves (ROCs) of the full and the compact models. Distribution of the effects of each feature on the output of B the full model or C the compact model, estimated using the SHapley Additive exPlanations (SHAP) values. The plot sorts features by the sum of SHAP value magnitudes over all samples. The blue to red color represents the feature value (red high, blue low). The x-axis measures the effects on model output (right positive, left negative)
Fig. 5
Fig. 5
Comparison of model performance with other predictive tools and in the internal validation set. A Receiver operating characteristic curves (ROCs) of CatBoost and other predictive tools/factors. B Receiver operating characteristic curves (ROCs) of different models
Fig. 6
Fig. 6
Application of the CatBoost model. A Receiver operating characteristic curves of different models in the prospective validation set. B Influence of the SHAP value on model output. C An example of the web-based tool. D The prediction results of CatBoost model and the top ten importance features are summarized. A green bar indicates a protective factor, whereas a red bar represents a risk factor. Bar length corresponds to the magnitude of protection or risk

References

    1. International Consensus Conferences in Intensive Care Medicine: noninvasive positive pressure ventilation in acute Respiratory failure. Am J Respir Crit Care Med 2001;163(1):283-291.
    1. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374(9685):250–259. doi: 10.1016/S0140-6736(09)60496-7.
    1. Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007;35(1):18–25. doi: 10.1097/01.CCM.0000251821.44259.F3.
    1. Frat JP, Ragot S, Coudroy R, Constantin JM, Girault C, Prat G, Boulain T, Demoule A, Ricard JD, Razazi K, Lascarrou JB, Devaquet J, Mira JP, Argaud L, Chakarian JC, Fartoukh M, Nseir S, Mercat A, Brochard L, Robert R, Thille AW. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med. 2018;46(2):208–215. doi: 10.1097/CCM.0000000000002818.
    1. Carrillo A, Gonzalez-Diaz G, Ferrer M, Martinez-Quintana ME, Lopez-Martinez A, Llamas N, Alcazar M, Torres A. Non-invasive ventilation in community-acquired pneumonia and severe acute respiratory failure. Intensive Care Med. 2012;38(3):458–466. doi: 10.1007/s00134-012-2475-6.
    1. Adda M, Coquet I, Darmon M, Thiery G, Schlemmer B, Azoulay E. Predictors of noninvasive ventilation failure in patients with hematologic malignancy and acute respiratory failure. Crit Care Med. 2008;36(10):2766–2772. doi: 10.1097/CCM.0b013e31818699f6.
    1. Thille AW, Contou D, Fragnoli C, Córdoba-Izquierdo A, Boissier F, Brun-Buisson C. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors. Crit Care. 2013;17(6):R269. doi: 10.1186/cc13103.
    1. Esteban A, Frutos-Vivar F, Ferguson ND, Arabi Y, Apezteguía C, González M, Epstein SK, Hill NS, Nava S, Soares MA, D'Empaire G, Alía I, Anzueto A. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med. 2004;350(24):2452–2460. doi: 10.1056/NEJMoa032736.
    1. Mosier JM, Sakles JC, Whitmore SP, Hypes CD, Hallett DK, Hawbaker KE, Snyder LS, Bloom JW. Failed noninvasive positive-pressure ventilation is associated with an increased risk of intubation-related complications. Ann Intensive Care. 2015;5:4. doi: 10.1186/s13613-015-0044-1.
    1. Duan J, Wang S, Liu P, Han X, Tian Y, Gao F, Zhou J, Mou J, Qin Q, Yu J, Bai L, Zhou L, Zhang R. Early prediction of noninvasive ventilation failure in COPD patients: derivation, internal validation, and external validation of a simple risk score. Ann Intensive Care. 2019;9(1):108. doi: 10.1186/s13613-019-0585-9.
    1. Liu L, Xie J, Wu W, Chen H, Li S, He H, Yu Y, Hu M, Li J, Zheng R, Li X, Qiu H, Tong Z, Du B, Fan E, Yang Y, Slutsky AS. A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. Lancet Digit Health. 2021;3(3):e166–e174. doi: 10.1016/S2589-7500(20)30316-2.
    1. Zhao QY, Wang H, Luo JC, Luo MH, Liu LP, Yu SJ, Liu K, Zhang YJ, Sun P, Tu GW, Luo Z. Development and validation of a machine-learning model for prediction of extubation failure in intensive care units. Front Med. 2021;8:676343. doi: 10.3389/fmed.2021.676343.
    1. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med. 2018;6(12):905–914. doi: 10.1016/S2213-2600(18)30300-X.
    1. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi: 10.1136/bmj.g7594.
    1. Sahetya SK, Wu TD, Morgan B, Herrera P, Roldan R, Paz E, Jaymez AA, Chirinos E, Portugal J, Quispe R, Brower RG, Checkley W, Capanni F, Caravedo MA, Cerna J, Davalos L, De Ferrari A, Denney JA, Dulanto A, Mongilardi N, Paredes C, Pereda MA, Shams N. Mean airway pressure as a predictor of 90-day mortality in mechanically ventilated patients. Crit Care Med. 2020;48(5):688–695. doi: 10.1097/CCM.0000000000004268.
    1. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance–part 1: physiologic determinants and measurements. Crit Care Med. 1992;20(10):1461–1472. doi: 10.1097/00003246-199210000-00017.
    1. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43(11):1130–1139. doi: 10.1097/01.mlr.0000182534.19832.83.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. Ozyilmaz E, Ugurlu AO, Nava S. Timing of noninvasive ventilation failure: causes, risk factors, and potential remedies. BMC Pulm Med. 2014;14:19. doi: 10.1186/1471-2466-14-19.
    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, Welte T. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi: 10.1183/09031936.00010206.
    1. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee SI. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2(1):56–67. doi: 10.1038/s42256-019-0138-9.
    1. Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. doi: 10.21037/atm.2016.03.35.
    1. Luo JC, Zhao QY, Tu GW. Clinical prediction models in the precision medicine era: old and new algorithms. Ann Transl Med. 2020;8(6):274. doi: 10.21037/atm.2020.02.63.
    1. Zhang Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann Transl Med. 2016;4(2):30.
    1. Vargas F, Clavel M, Sanchez-Verlan P, Garnier S, Boyer A, Bui HN, Clouzeau B, Sazio C, Kerchache A, Guisset O, Benard A, Asselineau J, Gauche B, Gruson D, Silva S, Vignon P, Hilbert G. Intermittent noninvasive ventilation after extubation in patients with chronic respiratory disorders: a multicenter randomized controlled trial (VHYPER) Intensive Care Med. 2017;43(11):1626–1636. doi: 10.1007/s00134-017-4785-1.
    1. Mallat J, Baghdadi FA, Mohammad U, Lemyze M, Temime J, Tronchon L, Thevenin D, Fischer MO. Central venous-to-arterial PCO2 difference and central venous oxygen saturation in the detection of extubation failure in critically ill patients. Crit Care Med. 2020;48(10):1454–1461. doi: 10.1097/CCM.0000000000004446.
    1. Mesquida J, Gruartmoner G, Espinal C, Masip J, Sabatier C, Villagrá A, Gómez H, Pinsky M, Baigorri F, Artigas A. Thenar oxygen saturation (StO(2)) alterations during a spontaneous breathing trial predict extubation failure. Ann Intensive Care. 2020;10(1):54. doi: 10.1186/s13613-020-00670-y.
    1. Dres M, Goligher EC, Dubé BP, Morawiec E, Dangers L, Reuter D, Mayaux J, Similowski T, Demoule A. Diaphragm function and weaning from mechanical ventilation: an ultrasound and phrenic nerve stimulation clinical study. Ann Intensive Care. 2018;8(1):53. doi: 10.1186/s13613-018-0401-y.

Source: PubMed

3
Abonner