Sleep deficiency and motor vehicle crash risk in the general population: a prospective cohort study

Daniel J Gottlieb, Jeffrey M Ellenbogen, Matt T Bianchi, Charles A Czeisler, Daniel J Gottlieb, Jeffrey M Ellenbogen, Matt T Bianchi, Charles A Czeisler

Abstract

Background: Insufficient sleep duration and obstructive sleep apnea, two common causes of sleep deficiency in adults, can result in excessive sleepiness, a well-recognized cause of motor vehicle crashes, although their contribution to crash risk in the general population remains uncertain. The objective of this study was to evaluate the relation of sleep apnea, sleep duration, and excessive sleepiness to crash risk in a community-dwelling population.

Methods: This was a prospective observational cohort study nested within the Sleep Heart Health Study, a community-based study of the health consequences of sleep apnea. The participants were 1745 men and 1456 women aged 40-89 years. Sleep apnea was measured by home polysomnography and questionnaires were used to assess usual sleep duration and daytime sleepiness. A follow-up questionnaire 2 years after baseline ascertained driving habits and motor vehicle crash history. Logistic regression analysis was used to examine the relation of sleep apnea and sleep duration at baseline to the occurrence of motor vehicle crashes during the year preceding the follow-up visit, adjusting for relevant covariates. The population-attributable fraction of motor vehicle crashes was estimated from the sample proportion of motor vehicle crashes and the adjusted odds ratios for motor vehicle crash within each exposure category.

Results: Among 3201 evaluable participants, 222 (6.9%) reported at least one motor vehicle crash during the prior year. A higher apnea-hypopnea index (p < 0.01), fewer hours of sleep (p = 0.04), and self-reported excessive sleepiness (p < 0.01) were each significantly associated with crash risk. Severe sleep apnea was associated with a 123% increased crash risk, compared to no sleep apnea. Sleeping 6 hours per night was associated with a 33% increased crash risk, compared to sleeping 7 or 8 hours per night. These associations were present even in those who did not report excessive sleepiness. The population-attributable fraction of motor vehicle crashes was 10% due to sleep apnea and 9% due to sleep duration less than 7 hours.

Conclusions: Sleep deficiency due to either sleep apnea or insufficient sleep duration is strongly associated with motor vehicle crashes in the general population, independent of self-reported excessive sleepiness.

Keywords: Epidemiology; Motor vehicle accident; Motor vehicle crash; Sleep apnea; Sleep deficiency; Sleep deprivation; Sleep duration.

Conflict of interest statement

Ethics approval and consent to participate

The protocol was approved by the institutional review board of each participating center and signed informed consent was provided by each participant. The IRB/Human Subjects Committee protocol numbers are as follows: Boston University School of Medicine: H-22384 Johns Hopkins University: H.34.94.05.23.A University of Minnesota: 9406M8378 New York University: H8185 University of Pittsburgh: 9406129 University of California at Davis: 200210023 University of Arizona: 94-0248-01.

Consent for publication

Not applicable.

Competing interests

DJG has received consulting fees or served as a paid member of scientific advisory boards for ResMed Corporation, VIVUS, Inc., and T. Leland Seeger & Associates, Inc.

JME has received consulting fees from Bose Corporation and Invenergy Renewables.

MTB has received funding from the Center for Integration of Medicine and Innovative Technology, the Milton Family Foundation, the MGH-MIT Grand Challenge, the American Sleep Medicine Foundation, and the Department of Neurology. He has a patent pending on a home sleep-monitoring device, has research agreements with MC10 and Insomnisolv, consulting agreements with McKesson, International Flavors and Fragrances, and Apple, Inc., serves as a medical monitor for Pfizer, and has provided expert testimony in sleep medicine. None of these entities had any role in the study.

CAC has received consulting fees from or served as a paid member of scientific advisory boards for Bose, Boston Red Sox, Columbia River Bar Pilots, Institute of Digital Media and Child Development, Purdue Pharma, Samsung, and Vanda Pharmaceuticals. He owns an equity interest in Vanda Pharmaceuticals. He has served as an expert witness on various legal cases related to sleep and circadian rhythms and he has received research support from Optum, San Francisco Bar Pilots, Schneider, Sysco, Philips Respironics, Vanda Pharmaceuticals, and the State of Washington Board of Pilotage Commissioners. The Harvard Medical School Sleep and Health Education Program and Brigham Sleep Health (CAC) have received funding for educational activities from Cephalon, Jazz Pharma, ResMed, Takeda Pharmaceuticals, Sanofi-Aventis, Sepracor, Simmons, and Mary Ann & Stanley Snider via Combined Jewish Philanthropies. CAC is the incumbent of an endowed professorship provided to Harvard University by Cephalon, and holds several process patents in the specialty of sleep and circadian rhythms (e.g., photic resetting of the human circadian pacemaker). CAC has received royalties from Houghton Miflin Harcourt, and from Koninklijke Philips Electronics/Philips Respironics for the Actiwatch-2 and Actiwatch Spectrum devices. CAC’s interests were reviewed and are managed by Brigham Health and Partners HealthCare in accordance with their conflict of interest policies.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Ascertainment of the study sample
Fig. 2
Fig. 2
The relation of sleep apnea (a) and reported usual sleep duration (b) to motor vehicle crash risk, adjusted for age, sex, and miles driven. Data are shown separately for non-sleepy (black, n = 2402) and sleepy (gray, n = 799) participants, where sleepiness is defined as a score ≥ 11 on the Epworth Sleepiness Scale. The referent group for a is non-sleepy participants with apnea-hypopnea index < 5. The referent group for b is non-sleepy participants reporting a usual sleep duration of 8 hours per night
Fig. 3
Fig. 3
The joint association of sleep apnea and reported usual sleep duration to motor vehicle crash risk. The referent group is individuals with an apnea-hypopnea index

References

    1. National Center on Sleep Disorders Research. National Institutes of Health Sleep Disorders Research Plan; NIH Publication No. 11–7820; November 2011.
    1. Hammond EC. Some preliminary findings on physical complaints from a prospective study of 1,064,004 men and women. Am J Public Health Nations Health. 1964;54:11–23. doi: 10.2105/AJPH.54.1.11.
    1. Kripke DF, Simons RN, Garfinkel L, Hammond EC. Short and long sleep and sleeping pills. Is increased mortality associated? Arch Gen Psychiatry. 1979;36:103–116. doi: 10.1001/archpsyc.1979.01780010109014.
    1. Colten HR, Altevogt BM, editors. Sleep disorders and sleep deprivation: an unmet public health problem. Washington, D.C.: The National Academies Press; 2006.
    1. Connor J, Whitlock G, Norton R, Jackson R. The role of driver sleepiness in car crashes: a systematic review of epidemiological studies. Accid Anal Prev. 2001;33:31–41. doi: 10.1016/S0001-4575(00)00013-0.
    1. Stutts JC, Wilkins JW, Scott Osberg J, Vaughn BV. Driver risk factors for sleep-related crashes. Accid Anal Prev. 2003;35:321–331. doi: 10.1016/S0001-4575(02)00007-6.
    1. Drake C, Roehrs T, Breslau N, Johnson E, Jefferson C, Scofield H, et al. The 10-year risk of verified motor vehicle crashes in relation to physiologic sleepiness. Sleep. 2010;33:745–752. doi: 10.1093/sleep/33.6.745.
    1. Centers for Disease Control and Prevention. Drowsy Driving – 19 States and the District of Columbia. MMWR. 2013;61:1033–7.
    1. Van Dongen HP, Baynard MD, Maislin G, Dinges DF. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability. Sleep. 2004;27:423–433.
    1. Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose–response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26:117–126. doi: 10.1093/sleep/26.2.117.
    1. Belenky G, Wesensten NJ, Thorne DR, Thomas DL, Sing HC, Redmond DP, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose–response study. J Sleep Res. 2003;12:1–12. doi: 10.1046/j.1365-2869.2003.00337.x.
    1. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328:1230–1235. doi: 10.1056/NEJM199304293281704.
    1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177:1006–1014. doi: 10.1093/aje/kws342.
    1. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement. Circulation. 2008;118:1080–1111. doi: 10.1161/CIRCULATIONAHA.107.189420.
    1. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, et al. A prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The Sleep Heart Health Study. Circulation. 2010;122:352–360. doi: 10.1161/CIRCULATIONAHA.109.901801.
    1. Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O’Connor GT, Resnick HE, et al. Obstructive sleep apnea and incident stroke: The Sleep Heart Health Study. Am J Respir Crit Care Med. 2010;182:269–277. doi: 10.1164/rccm.200911-1746OC.
    1. Marin JM, Agusti A, Villar I, Former M, Nieto D, Carrizo SJ, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012;307:2169–2176. doi: 10.1001/jama.2012.3418.
    1. Sassani A, Findley LJ, Kryger M, Goldlust E, George C, Davidson TM. Reducing motor-vehicle collisions, costs, and fatalities by treating obstructive sleep apnea syndrome. Sleep. 2004;27:453–458. doi: 10.1093/sleep/27.3.453.
    1. Tregear S, Reston J, Schoelles K, Phillips B. Obstructive sleep apnea and risk of motor vehicle crash: systematic review and meta-analysis. J Clin Sleep Med. 2009;5:573–581.
    1. American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed. Darien IL: American Academy of Sleep Medicine; 2014.
    1. US Preventive Services Task Force, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, et al. Screening for Obstructive Sleep Apnea in Adults: US Preventive Services Task Force Recommendation Statement, vol. 317; JAMA, 2017. p. 407–14.
    1. Kapur VK, Baldwin CM, Resnick HE, Gottlieb DJ, Nieto FJ. Sleepiness in patients with moderate to severe sleep-disordered breathing. Sleep. 2005;28:472–477. doi: 10.1093/sleep/28.4.472.
    1. Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, et al. The Sleep Heart Health Study: design, rationale, and methods. Sleep. 1997;20:1077–1085.
    1. Lind BK, Goodwin JL, Hill JG, Ali T, Redline S, Quan SF. Recruitment of healthy adults into a study of overnight sleep monitoring in the home: experience of the Sleep Heart Health Study. Sleep Breath. 2003;7:13–24. doi: 10.1007/s11325-003-0013-z.
    1. Redline S, Sanders MH, Lind BK, Quan SF, Iber C, Gottlieb DJ, et al. Methods for obtaining and analyzing unattended polysomnography data for a multicenter study. Sleep Heart Health Res Group. Sleep. 1998;21:759–767.
    1. Whitney CW, Gottlieb DJ, Redline S, Norman RG, Dodge RR, Shahar E, et al. Reliability of scoring respiratory disturbance indices and sleep staging. Sleep. 1998;21:749–757. doi: 10.1093/sleep/21.7.749.
    1. Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM, et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med. 2005;165:863–867. doi: 10.1001/archinte.165.8.863.
    1. Johns MW. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep. 1991;14:540–545. doi: 10.1093/sleep/14.6.540.
    1. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol. 1974;99:325–332. doi: 10.1093/oxfordjournals.aje.a121617.
    1. Dingus TA, Klauer SG, Neale VL, Petersen A, Lee SE, Sudweeks J, et al. The 100-Car Naturalistic Driving Study, Phase II—Results of the 100-Car Field Experiment DOT HS 810 593: National Highway Traffic Safety Administration. Washington, D.C.: USDOT; 2006.
    1. Tefft BC. Prevalence of motor vehicle crashes involving drowsy drivers, United States, 2009–2013. Washington, D.C: AAA Foundation for Traffic Safety; 2014.
    1. Young T, Blustein J, Finn L, Palta M. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep. 1997;20:608–613. doi: 10.1093/sleep/20.8.608.
    1. Young T, Finn L, Peppard PE, Szklo-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008;31:1071–1078. doi: 10.1093/sleep/31.5.593.
    1. Douglas NJ. Chapter 265. Sleep Apnea. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson J, Loscalzo J. Harrison's Principles of Internal Medicine, 18e New York, NY: McGraw-Hill; 2012. . Accessed 17 Feb 2018.
    1. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38:843–844. doi: 10.5665/sleep.4310.
    1. Connor J, Norton R, Ameratunga S, Robinson E, Civil I, Dunn R, et al. Driver sleepiness and the risk of serious injury to car occupants: population based case control study. BMJ. 2002;324:1125. doi: 10.1136/bmj.324.7346.1125.
    1. Martiniuk ALC, Senserrick T, Lo S, Williamson A, Du W, Grunstein RR, et al. Sleep-deprived young drivers and the risk for crash: The DRIVE Prospective Cohort Study. JAMA Pediatr. 2013;167:647–655. doi: 10.1001/jamapediatrics.2013.1429.
    1. Klerman EB, Dijk DJ. Interindividual variation in sleep duration and its association with sleep debt in young adults. Sleep. 2005;28:1253–1259. doi: 10.1093/sleep/28.10.1253.
    1. Pack AI, Maislin G, Staley B, Pack FM, Rogers WC, George CF, et al. Impaired performance in commercial drivers: role of sleep apnea and short sleep duration. Am J Respir Crit Care Med. 2006;174:446–454. doi: 10.1164/rccm.200408-1146OC.
    1. Sharwood LN, Elkington J, Stevenson M, Grunstein RR, Meuleners L, Ivers RQ, et al. Assessing sleepiness and sleep disorders in Australian long-distance commercial vehicle drivers: self-report versus an “at home” monitoring device. Sleep. 2012;35:469–475. doi: 10.5665/sleep.1726.
    1. Philip P, Sagaspe P, Taillard J, Chaumet G, Bayon V, Coste O, et al. Maintenance of wakefulness test, obstructive sleep apnea syndrome, and driving risk. Ann Neurol. 2008;64:410–416. doi: 10.1002/ana.21448.
    1. Singletary BA, Do AN, Donnelly JP, Huisingh C, Mefford MT, Modi R, et al. Self-reported vs state-recorded motor vehicle collisions among older community dwelling individuals. Accid Anal Prev. 2017;101:22–27. doi: 10.1016/j.aap.2017.01.021.
    1. Boufous S, Ivers R, Senserrick T, Stevenson M, Norton R, Williamson A. Accuracy of self-report of on-road crashes and traffic offences in a cohort of young drivers: the DRIVE study. Inj Prev. 2010;16:275–277. doi: 10.1136/ip.2009.024877.
    1. Tefft BC. Motor vehicle crashes, injuries, and deaths in relation to driver age: United States, 1995–2010. Washington, D.C: AAA Foundation for Traffic Safety; 2012.
    1. Newman AB, Foster G, Givelber R, Nieto FJ, Redline S, Young T. Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study. Arch Intern Med. 2005;165:2408–2413. doi: 10.1001/archinte.165.20.2408.

Source: PubMed

3
Abonner