Medical Management of Glaucoma in the 21st Century from a Canadian Perspective

Paul Harasymowycz, Catherine Birt, Patrick Gooi, Lisa Heckler, Cindy Hutnik, Delan Jinapriya, Lesya Shuba, David Yan, Radmila Day, Paul Harasymowycz, Catherine Birt, Patrick Gooi, Lisa Heckler, Cindy Hutnik, Delan Jinapriya, Lesya Shuba, David Yan, Radmila Day

Abstract

Glaucoma is a medical term describing a group of progressive optic neuropathies characterized by degeneration of retinal ganglion cells and retinal nerve fibre layer and resulting in changes in the optic nerve head. Glaucoma is a leading cause of irreversible vision loss worldwide. With the aging population it is expected that the prevalence of glaucoma will continue to increase. Despite recent advances in imaging and visual field testing techniques that allow establishment of earlier diagnosis and treatment initiation, significant numbers of glaucoma patients are undiagnosed and present late in the course of their disease. This can lead to irreversible vision loss, reduced quality of life, and a higher socioeconomic burden. Selection of therapeutic approaches for glaucoma should be based on careful ocular examination, patient medical history, presence of comorbidities, and awareness of concomitant systemic therapies. Therapy should also be individualized to patients' needs and preferences. Recent developments in this therapeutic field require revisiting treatment algorithms and integration of traditional and novel approaches in order to ensure optimal visual outcomes. This article provides an overview of recent developments and practice trends in the medical management of glaucoma in Canada. A discussion of the surgical management is beyond the scope of this paper.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Glaucoma classification and subtypes.
Figure 2
Figure 2
Secondary open-angle glaucoma classification chart.
Figure 3
Figure 3
Suggested range for initial target IOP for each eye (a) with ≥ 30% reduction from baseline; (b) with 30% to 35% reduction from baseline; (c) with ≥ 25% reduction from baseline; (d) with ≥ 20% reduction from baseline. In patients with severe optic nerve damage, those with rapidly progressing disease or with other risk factors (i.e., family history, advanced age, pseudoexfoliation, pigment dispersion syndrome, uveitis, steroid use, or disc hemorrhage), selecting target IOP lower than 25% of the pretreatment IOP is justified. Other factors such as the rapidity of progression and the severity of disease in the other eye should be taken into consideration. Conversely, choosing a less aggressive IOP range may be reasonable if the risks of aggressive treatment outweigh the benefits (i.e., comorbidities and older age).
Figure 4
Figure 4
The chronology of the introduction of topical IOP-lowering medications. Systemic carbonic anhydrase inhibitors have been available since 1955.
Figure 5
Figure 5
Glaucoma pharmaceutical management algorithm (SLT, MIGS, or other surgeries may be performed at any step of the algorithm). FC, fixed combination; BID single agent, dorzolamide, brinzolamide, and brimonidine; PG, prostaglandin analogue (latanoprost, travoprost, and bimatoprost); PG-βB FC, prostaglandin + timolol (latanoprost + timolol, travoprost + timolol); BID-βB FC, BID-dosed combination with timolol (dorzolamide + timolol, brinzolamide + timolol, brimonidine + timolol); AA-CAI F, α agonist + CIA (brimonidine + brinzolamide); SLT, selective laser trabeculoplasty; MIGS, microinvasive glaucoma surgery. Patient and disease characteristics should be considered at all stages of algorithm and the therapy should be individualized according to patient needs (i.e., ability to tolerate any component of the therapy). In addition, at all stages of the treatment algorithm it is imperative to monitor for adverse effects as well as disease progression (RNFL/VF/disc).

References

    1. Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye. Canadian Journal of Ophthalmology. 2009;44(supplement 1):S7–S93. doi: 10.3129/i09.080.
    1. Medeiros F. A., Lisboa R., Weinreb R. N., Liebmann J. M., Girkin C., Zangwill L. M. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120(4):736–744. doi: 10.1016/j.ophtha.2012.09.039.
    1. European Glaucoma Society. Terminology and Guidelines for Glaucoma. 4th. 2015. .
    1. Gupta N., Yücel Y. H. Glaucoma as a neurodegenerative disease. Current Opinion in Ophthalmology. 2007;18(2):110–114. doi: 10.1097/ICU.0b013e3280895aea.
    1. Na J. H., Lee K., Lee J. R., Baek S., Yoo S. J., Kook M. S. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomography. Clinical and Experimental Ophthalmology. 2013;41(9):870–880. doi: 10.1111/ceo.12142.
    1. Lisboa R., Leite M. T., Zangwill L. M., Tafreshi A., Weinreb R. N., Medeiros F. A. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012;119(11):2261–2269. doi: 10.1016/j.ophtha.2012.06.009.
    1. Singh K., Greenfield D. S. PPG: to treat or not to treat. Ophthalmology Times, April 2011, .
    1. Schlötzer-Schrehardt U., Pasutto F., Sommer P., et al. Genotype-correlated expression of lysyl oxidase-like 1 in ocular tissues of patients with pseudoexfoliation syndrome/glaucoma and normal patients. The American Journal of Pathology. 2008;173(6):1724–1735. doi: 10.2353/ajpath.2008.080535.
    1. Gemenetzi M., Yang Y., Lotery A. J. Current concepts on primary open-angle glaucoma genetics: a contribution to disease pathophysiology and future treatment. Eye. 2012;26(3):355–369. doi: 10.1038/eye.2011.309.
    1. Kumar A., Basavaraj M. G., Gupta S. K., et al. Role of CYP1B1, MYOC, OPTN and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Molecular Vision. 2007;13:667–676.
    1. Mantravadi A. V., Vadhar N. Glaucoma. Primary Care: Clinics in Office Practice. 2015;42(3):437–449. doi: 10.1016/j.pop.2015.05.008.
    1. Mi X.-S., Yuan T.-F., So K.-F. The current research status of normal tension glaucoma. Clinical Interventions in Aging. 2014;9:1563–1571. doi: 10.2147/CIA.S67263.
    1. Mroczkowska S., Benavente-Perez A., Negi A., Sung V., Patel S. R., Gherghel D. Primary open-angle glaucoma vs normal-tension glaucoma: the vascular perspective. JAMA Ophthalmology. 2013;131(1):36–43. doi: 10.1001/2013.jamaophthalmol.1.
    1. Mudumbai R. C. Clinical update on normal tension glaucoma. Seminars in Ophthalmology. 2013;28(3):173–179. doi: 10.3109/08820538.2013.771202.
    1. Song B. J., Caprioli J. New directions in the treatment of normal tension glaucoma. Indian Journal of Ophthalmology. 2014;62(5):529–537. doi: 10.4103/0301-4738.133481.
    1. Ghanem A. A., Elewa A. M., Arafa L. F. Endothelin-1 and nitric oxide levels in patients with glaucoma. Ophthalmic Research. 2011;46(2):98–102. doi: 10.1159/000323584.
    1. Galassi F., Giambene B., Varriale R. Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Investigative Ophthalmology & Visual Science. 2011;52(7):4467–4471. doi: 10.1167/iovs.10-6710.
    1. Grus F. H., Joachim S. C., Hoffmann E. M., Pfeiffer N. Complex autoantibody repertoires in patients with glaucoma. Molecular Vision. 2004;10:132–137.
    1. Wax M. B., Barrett D. A., Pestronk A. Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma. American Journal of Ophthalmology. 1994;117(5):561–568. doi: 10.1016/s0002-9394(14)70059-5.
    1. Berdahl J. P., Fautsch M. P., Stinnett S. S., Allingham R. R. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Investigative Ophthalmology & Visual Science. 2008;49(12):5412–5418. doi: 10.1167/iovs.08-2228.
    1. Mroczkowska S., Ekart A., Sung V., et al. Coexistence of macro- and micro-vascular abnormalities in newly diagnosed normal tension glaucoma patients. Acta Ophthalmologica. 2012;90(7):e553–e559. doi: 10.1111/j.1755-3768.2012.02494.x.
    1. Sergi M., Salerno D. E., Rizzi M., et al. Prevalence of normal tension glaucoma in obstructive sleep apnea syndrome patients. Journal of Glaucoma. 2007;16(1):42–46. doi: 10.1097/01.ijg.0000243472.51461.24.
    1. Wright C., Tawfik M. A., Waisbourd M., Katz L. J. Primary angle-closure glaucoma: an update. Acta Ophthalmologica. 2016;94(3):217–225. doi: 10.1111/aos.12784.
    1. Quigley H. A., Broman A. T. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224.
    1. Quigley H. A., Friedman D. S., Congdon N. G. Possible mechanisms of primary angle-closure and malignant glaucoma. Journal of Glaucoma. 2003;12(2):167–180. doi: 10.1097/00061198-200304000-00013.
    1. Filho A. D., Cronemberger S., Mérula R. V., Calixto N. Plateau iris. Arquivos Brasileiros de Oftalmologia. 2008;71(5):752–758. doi: 10.1590/S0004-27492008000500029.
    1. Tarongoy P., Ho C. L., Walton D. S. Angle-closure glaucoma: the role of the lens in the pathogenesis, prevention, and treatment. Survey of Ophthalmology. 2009;54(2):211–225. doi: 10.1016/j.survophthal.2008.12.002.
    1. Pavlin C. J., Harasiewicz K., Sherar M. D., Foster F. S. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98(3):287–295. doi: 10.1016/S0161-6420(91)32298-X.
    1. Tham Y.-C., Li X., Wong T. Y., Quigley H. A., Aung T., Cheng C.-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013.
    1. Cook C., Foster P. Epidemiology of glaucoma: What's new? Canadian Journal of Ophthalmology. 2012;47(3):223–226. doi: 10.1016/j.jcjo.2012.02.003.
    1. Buys Y. M. The need for ‘made in Canada’ glaucoma epidemiology data. Canadian Journal of Ophthalmology. 2011;46(4):300–302. doi: 10.1016/j.jcjo.2011.06.003.
    1. Anraku A., Jin Y.-P., Butty Z., et al. The Toronto epidemiology glaucoma survey: a pilot study. Canadian Journal of Ophthalmology. 2011;46(4):352–357. doi: 10.1016/j.jcjo.2011.06.013.
    1. Perruccio A. V., Badley E. M., Trope G. E. Self-reported glaucoma in Canada: findings from population-based surveys, 1994–2003. Canadian Journal of Ophthalmology. 2007;42(2):219–226. doi: 10.3129/can.j.ophthalmol.i07-001.
    1. Buys Y. M., Gaspo R., Kwok K. Referral source, symptoms, and severity at diagnosis of ocular hypertension or open-angle glaucoma in various practices. Canadian Journal of Ophthalmology. 2012;47(3):217–222. doi: 10.1016/j.jcjo.2012.03.031.
    1. Buys Y. M., Jin Y.-P. Socioeconomic status as a risk factor for late presentation of glaucoma in Canada. Canadian Journal of Ophthalmology. 2013;48(2):83–87. doi: 10.1016/j.jcjo.2012.10.003.
    1. Chen P. P. Blindness in patients with treated open-angle glaucoma. Ophthalmology. 2003;110(4):726–733. doi: 10.1016/S0161-6420(02)01974-7.
    1. Lee P. P., Walt J. G., Doyle J. J., et al. A multicenter, retrospective pilot study of resource use and costs associated with severity of disease in glaucoma. Archives of Ophthalmology. 2006;124(1):12–19. doi: 10.1001/archopht.124.1.12.
    1. Einarson T. R., Vicente C., Machado M., Covert D., Trope G. E., Iskedjian M. Screening for glaucoma in Canada: a systematic review of the literature. Canadian Journal of Ophthalmology. 2006;41(6):709–721. doi: 10.1139/i06-064.
    1. Burr J. M., Mowatt G., Hernández R., et al. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technology Assessment. 2007;11(41)
    1. Kassam F., Yogesan K., Sogbesan E., Pasquale L. R., Damji K. F. Teleglaucoma: improving access and efficiency for glaucoma care. Middle East African Journal of Ophthalmology. 2013;20(2):142–149. doi: 10.4103/0974-9233.110619.
    1. Hollands H., Johnson D., Hollands S., Simel D. L., Jinapriya D., Sharma S. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. Journal of the American Medical Association. 2013;309(19):2035–2042. doi: 10.1001/jama.2013.5099.
    1. Cross J. M., Girkin C. A., Owsley C., McGwin G., Jr. The association between thyroid problems and glaucoma. British Journal of Ophthalmology. 2008;92(11):1503–1505. doi: 10.1136/bjo.2008.147165.
    1. Varma R., Lee P. P., Goldberg I., Kotak S. An assessment of the health and economic burdens of glaucoma. American Journal of Ophthalmology. 2011;152(4):515–522. doi: 10.1016/j.ajo.2011.06.004.
    1. Haymes S. A., Leblanc R. P., Nicolela M. T., Chiasson L. A., Chauhan B. C. Risk of falls and motor vehicle collisions in glaucoma. Investigative Ophthalmology and Visual Science. 2007;48(3):1149–1155. doi: 10.1167/iovs.06-0886.
    1. Skalicky S., Goldberg I. Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the geriatric depression scale-15, assessment of function related to vision, and the glaucoma quality of life-15. Journal of Glaucoma. 2008;17(7):546–551. doi: 10.1097/ijg.0b013e318163bdd1.
    1. McKean-Cowdin R., Varma R., Wu J., Hays R. D., Azen S. P. Severity of visual field loss and health-related quality of life. American Journal of Ophthalmology. 2007;143(6):1013–1023. doi: 10.1016/j.ajo.2007.02.022.
    1. Rahman M. Q., Beard S. M., Discombe R., Sharma R., Montgomery D. M. I. Direct healthcare costs of glaucoma treatment. British Journal of Ophthalmology. 2013;97(6):720–724. doi: 10.1136/bjophthalmol-2012-302525.
    1. Traverso C. E., Walt J. G., Kelly S. P., et al. Direct costs of glaucoma and severity of the disease: a multinational long term study of resource utilisation in Europe. British Journal of Ophthalmology. 2005;89(10):1245–1249. doi: 10.1136/bjo.2005.067355.
    1. Rein D. B., Zhang P., Wirth K. E., et al. The economic burden of major adult visual disorders in the United States. Archives of Ophthalmology. 2006;124(12):1754–1760. doi: 10.1001/archopht.124.12.1754.
    1. Kitazawa Y., Horie T. Diurnal variation of intraocular pressure in primary open-angle glaucoma. American Journal of Ophthalmology. 1975;79(4):557–566. doi: 10.1016/0002-9394(75)90792-8.
    1. Newell F. W., Krill A. E. Diurnal tonography in normal and glaucomatous eyes. Transactions of the American Ophthalmological Society. 1964;62:349–374.
    1. Realini T., Weinreb N., Wisniewski S. Short-term repeatability of diurnal intraocular pressure patterns in glaucomatous individuals. Ophthalmology. 2011;118(1):47–51. doi: 10.1016/j.ophtha.2010.04.027.
    1. Lee Y. R., Kook M. S., Joe S. G., et al. Circadian (24-hour) pattern of intraocular pressure and visual field damage in eyes with normal-tension glaucoma. Investigative Ophthalmology & Visual Science. 2012;53(2):881–887. doi: 10.1167/iovs.11-7846.
    1. Renard E., Palombi K., Gronfier C., et al. Twenty-four hour (Nyctohemeral) rhythm of intraocular pressure and ocular perfusion pressure in normal-tension glaucoma. Investigative Ophthalmology and Visual Science. 2010;51(2):882–889. doi: 10.1167/iovs.09-3668.
    1. Kent K. IOP: Managing the fluctuation factor variations in intraocular pressure are proving to be more unpredictable than previously believed, Review of Ophthalmology, .
    1. Susanna R., Jr., De Moraes C. G., Cioffi G. A., Ritch R. Why do people (still) go blind from glaucoma? Translational Vision Science and Technology. 2015;4(2):p. 1. doi: 10.1167/tvst.4.2.1.
    1. Hatanaka M., Babic M., Susanna R., Jr. Reproducibility of the mean, fluctuation, and IOP peak in the diurnal tension curve. Journal of Glaucoma. 2013;22(5):390–392. doi: 10.1097/IJG.0b013e3182447a03.
    1. Tajunisah I., Reddy S. C., Fathilah J. Diurnal variation of intraocular pressure in suspected glaucoma patients and their outcome. Graefe's Archive for Clinical and Experimental Ophthalmology. 2007;245(12):1851–1857. doi: 10.1007/s00417-007-0681-7.
    1. Kletke S. N., Varma D. K., Rai A. S., Ahmed I. K. Proportion of Undetected Narrow Angles or Angle Closure in Cataract Surgery Referrals. ASCRS & ASOA; 2014. .
    1. Baskaran M., Iyer J. V., Narayanaswamy A. K., et al. Anterior segment imaging predicts incident gonioscopic angle closure. Ophthalmology. 2015;122(12):2380–2384. doi: 10.1016/j.ophtha.2015.07.030.
    1. Vizzeri G., Weinreb R. N., Martinez de la Casa J. M., et al. Clinicians agreement in establishing glaucomatous progression using the Heidelberg retina tomograph. Ophthalmology. 2009;116(1):14–24. doi: 10.1016/j.ophtha.2008.08.030.
    1. Larocca F., Dhalla A.-H., Kelly M. P., Farsiu S., Izatt J. A. Optimization of confocal scanning laser ophthalmoscope design. Journal of Biomedical Optics. 2013;18(7) doi: 10.1117/1.JBO.18.7.076015.076015
    1. Alexandrescu C., Dascalu A. M., Panca A., et al. Confocal scanning laser ophthalmoscopy in glaucoma diagnosis and management. Journal of Medicine and Life. 2010;3(3):229–234.
    1. Bussel I. I., Wollstein G., Schuman J. S. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. British Journal of Ophthalmology. 2014;98(supplement 2):ii15–ii19. doi: 10.1136/bjophthalmol-2013-304326.
    1. Le P. V., Tan O., Chopra V., et al. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Investigative Ophthalmology and Visual Science. 2013;54(6):4287–4295. doi: 10.1167/iovs.12-11388.
    1. Wessel J. M., Horn F. K., Tornow R. P., et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Investigative Ophthalmology & Visual Science. 2013;54(5):3613–3620. doi: 10.1167/iovs.12-9786.
    1. Medeiros F. A., Zangwill L. M., Bowd C., Mansouri K., Weinreb R. N. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Investigative Ophthalmology and Visual Science. 2012;53(11):6939–6946. doi: 10.1167/iovs.12-10345.
    1. Sung K. R., Sun J. H., Na J. H., Lee J. Y., Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119(2):308–313. doi: 10.1016/j.ophtha.2011.08.022.
    1. Vianna J. R., Danthurebandara V. M., Sharpe G. P., et al. Importance of normal aging in estimating the rate of glaucomatous neuroretinal rim and retinal nerve fiber layer loss. Ophthalmology. 2015;122(12):2392–2398. doi: 10.1016/j.ophtha.2015.08.020.
    1. Delgado M. F., Nguyen N. T. A., Cox T. A., et al. Automated perimetry: a report by the american academy of ophthalmology. Ophthalmology. 2002;109(12):2362–2374. doi: 10.1016/s0161-6420(02)01726-8.
    1. Medeiros F. A., Sample P. A., Weinreb R. N. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. American Journal of Ophthalmology. 2004;137(5):863–871. doi: 10.1016/j.ajo.2003.12.009.
    1. Landers J. A., Goldberg I., Graham S. L. Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Archives of Ophthalmology. 2003;121(12):1705–1710. doi: 10.1001/archopht.121.12.1705.
    1. Traynis I., De Moraes C. G., Raza A. S., Liebmann J. M., Ritch R., Hood D. C. Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmology. 2014;132(3):291–297. doi: 10.1001/jamaophthalmol.2013.7656.
    1. Chauhan B. C., Garway-Heath D. F., Goñi F. J., et al. Practical recommendations for measuring rates of visual field change in glaucoma. British Journal of Ophthalmology. 2008;92(4):569–573. doi: 10.1136/bjo.2007.135012.
    1. Quaranta L., Gandolfo F., Turano R., et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Investigative Ophthalmology and Visual Science. 2006;47(7):2917–2923. doi: 10.1167/iovs.05-1253.
    1. Ren R., Jonas J. B., Tian G., et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–266. doi: 10.1016/j.ophtha.2009.06.058.
    1. Caprioli J., de Leon J. M., Azarbod P., et al. Trabeculectomy can improve long-term visual function in glaucoma. Ophthalmology. 2016;123(1):117–128. doi: 10.1016/j.ophtha.2015.09.027.
    1. American Academy of Ophthalmology Glaucoma Panel. Preferred Practice Pattern® Guidelines. Primary Open-Angle Glaucoma, .
    1. Marvasti A. H., Tatham A. J., Zangwill L. M., et al. The relationship between visual field index and estimated number of retinal ganglion cells in glaucoma. PLoS ONE. 2013;8(10) doi: 10.1371/journal.pone.0076590.e76590
    1. Meira-Freitas D., Lisboa R., Tatham A., et al. Predicting progression in glaucoma suspects with longitudinal estimates of retinal ganglion cell counts. Investigative Ophthalmology & Visual Science. 2013;54(6):4174–4183. doi: 10.1167/iovs.12-11301.
    1. Leske M. C., Heijl A., Hussein M., Bengtsson B., Hyman L., Komaroff E. Factors for glaucoma progression and the effect of treatment: the Early Manifest Glaucoma Trial. Archives of Ophthalmology. 2003;121(1):48–56. doi: 10.1001/archopht.121.1.48.
    1. Heijl A., Leske M. C., Bengtsson B., Hyman L., Bengtsson B., Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Archives of Ophthalmology. 2002;120(10):1268–1279. doi: 10.1001/archopht.120.10.1268.
    1. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. American Journal of Ophthalmology. 2000;130(4):429–440. doi: 10.1016/s0002-9394(00)00538-9.
    1. Vianna J. R., Chauhan B. C. How to detect progression in glaucoma. Progress in Brain Research. 2015;221:135–158. doi: 10.1016/bs.pbr.2015.04.011.
    1. Chauhan B. C., Mikelberg F. S., Artes P. H., et al. Canadian glaucoma study: 3. Impact of risk factors and intraocular pressure reduction on the rates of visual field change. Archives of Ophthalmology. 2010;128(10):1249–1255. doi: 10.1001/archophthalmol.2010.196.
    1. Garway-Heath D. F., Crabb D. P., Bunce C., et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. The Lancet. 2015;385(9975):1295–1304. doi: 10.1016/s0140-6736(14)62111-5.
    1. Eyawo O., Nachega J., Lefebvre P., et al. Efficacy and safety of prostaglandin analogues in patients with predominantly primary open-angle glaucoma or ocular hypertension: a meta-analysis. Clinical Ophthalmology. 2009;3(1):447–456.
    1. Quaranta L., Riva I., Katsanos A., Floriani I., Centofanti M., Konstas A. G. P. Safety and efficacy of travoprost solution for the treatment of elevated intraocular pressure. Clinical Ophthalmology. 2015;9:633–643. doi: 10.2147/OPTH.S61444.
    1. Riva I., Katsanos A., Floriani I., et al. Long-term 24-hour intraocular pressure control with travoprost monotherapy in patients with primary open-angle glaucoma. Journal of Glaucoma. 2014;23(8):535–540. doi: 10.1097/ijg.0000000000000073.
    1. Alm A., Grierson I., Shields M. B. Side effects associated with prostaglandin analog therapy. Survey of Ophthalmology. 2008;53(6):S93–S105. doi: 10.1016/j.survophthal.2008.08.004.
    1. Shah M., Lee G., Lefebvre D. R., et al. A cross-sectional survey of the association between bilateral topical prostaglandin analogue use and ocular adnexal features. PLoS ONE. 2013;8(5) doi: 10.1371/journal.pone.0061638.e61638
    1. Khouri A., Lama P. J., Fechtner R. D. Beta blockers. In: Netland P. A., editor. Glaucoma Medical Therapy: Principles and Management. 2nd. New York, NY, USA: Oxford University Press; 2008. pp. 55–78.
    1. Lama P. J. Systemic adverse effects of beta-adrenergic blockers: an evidence-based assessment. American Journal of Ophthalmology. 2002;134(5):749–760. doi: 10.1016/s0002-9394(02)01699-9.
    1. Salpeter S., Ormiston T., Salpeter E. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews. 2005;19(4)CD003566
    1. Neufeld A. H., Zawistowski K. A., Page E. D., Bromberg B. B. Influences on the density of β-adrenergic receptors in the cornea and iris-ciliary body of the rabbit. Investigative Ophthalmology and Visual Science. 1978;17(11):1069–1075.
    1. Samama P., Bond R. A., Rockman H. A., Milano C. A., Lefkowitz R. J. Ligand-induced overexpression of a constitutively active β 2-adrenergic receptor: pharmacological creation of a phenotype in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(1):137–141. doi: 10.1073/pnas.94.1.137.
    1. Molinoff P. B., Aarons R. D. Effects of drugs on β-adrenergic receptors on human lymphocytes. Journal of Cardiovascular Pharmacology. 1983;5(supplement 1):S63–S67. doi: 10.1097/00005344-198300051-00010.
    1. Maclure G. M. Chronic open angle glaucoma treated with timolol. A four year study. Transactions of the Ophthalmological Societies of the United Kingdom. 1983;103, part 1:78–83.
    1. Schuman J. S., Horwitz B., Choplin N. T., David R., Albracht D., Chen K. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension. A controlled, randomized, multicenter clinical trial. Archives of Ophthalmology. 1997;115(7):847–852. doi: 10.1001/archopht.1997.01100160017002.
    1. Ericson L. A. Twenty-four hourly variations of the aqueous flow. Examinations with perilimbal suction cup. Acta Ophthalmologica. 1958;37(supplement 50):1–95.
    1. Drance S. M. The significance of the diurnal tension variations in normal and glaucomatous eyes. Archives of Ophthalmology. 1960;64:494–501. doi: 10.1001/archopht.1960.01840010496004.
    1. Letchinger S. L., Frohlichstein D., Glieser D. K., et al. Can the concentration of timolol or the frequency of its administration be reduced? Ophthalmology. 1993;100(8):1259–1262. doi: 10.1016/S0161-6420(93)31496-X.
    1. Ong L. B., Liza-Sharmini A. T., Chieng L. L., et al. The efficacy of timolol in gel-forming solution after morning or evening dosing in Asian glaucomatous patients. Journal of Ocular Pharmacology and Therapeutics. 2005;21(5):388–394. doi: 10.1089/jop.2005.21.388.
    1. Fudemberg S. J., Batiste C., Katz L. J. Efficacy, safety, and current applications of brimonidine. Expert Opinion on Drug Safety. 2008;7(6):795–799. doi: 10.1517/17425250802457609.
    1. van der Valk R., Webers C. A. B., Schouten J. S. A. G., Zeegers M. P., Hendrikse F., Prins M. H. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology. 2005;112(7):1177–1185. doi: 10.1016/j.ophtha.2005.01.042.
    1. Strom B. L., Schinnar R., Apter A. J., et al. Absence of cross-reactivity between sulfonamide antibiotics and sulfonamide nonantibiotics. The New England Journal of Medicine. 2003;349(17):1628–1635. doi: 10.1056/nejmoa022963.
    1. Johnson K. K., Green D. L., Rife J. P., Limon L. Sulfonamide cross-reactivity: fact or fiction? Annals of Pharmacotherapy. 2005;39(2):290–301. doi: 10.1345/aph.1e350.
    1. Brackett C. C., Singh H., Block J. H. Likelihood and mechanisms of cross-allergenicity between sulfonamide antibiotics and other drugs containing a sulfonamide functional group. Pharmacotherapy. 2004;24(7):856–870. doi: 10.1592/phco.24.9.856.36106.
    1. National Institute for Health and Care Excellence. NICE guidelines [CG85]: Glaucoma: diagnosis and management, .
    1. Kass M. A., Heuer D. K., Higginbotham E. J., et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology. 2002;120(6):701–713. doi: 10.1001/archopht.120.6.701.
    1. Quaranta L., Biagioli E., Riva I., et al. Prostaglandin analogs and timolol-fixed versus unfixed combinations or monotherapy for open-angle glaucoma: a systematic review and meta-analysis. Journal of Ocular Pharmacology and Therapeutics. 2013;29(4):382–389. doi: 10.1089/jop.2012.0186.
    1. Chrai S. S., Makoid M. C., Eriksen S. P., Robinson J. R. Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. Journal of Pharmaceutical Sciences. 1974;63(3):333–338. doi: 10.1002/jps.2600630304.
    1. Holló G., Topouzis F., Fechtner R. D. Fixed-combination intraocular pressure-lowering therapy for glaucoma and ocular hypertension: advantages in clinical practice. Expert Opinion on Pharmacotherapy. 2014;15(12):1737–1747. doi: 10.1517/14656566.2014.936850.
    1. Jaenen N., Baudouin C., Pouliquen P., Manni G., Figueiredo A., Zeyen T. Ocular symptoms and signs with preserved and preservative-free glaucoma medications. European Journal of Ophthalmology. 2007;17(3):341–349.
    1. Pisella P. J., Pouliquen P., Baudouin C. Prevalence of ocular symptoms and signs with preserved and preservative free glaucoma medication. British Journal of Ophthalmology. 2002;86(4):418–423. doi: 10.1136/bjo.86.4.418.
    1. Boimer C., Birt C. M. Preservative exposure and surgical outcomes in glaucoma patients: the PESO study. Journal of Glaucoma. 2013;22(9):730–735. doi: 10.1097/ijg.0b013e31825af67d.
    1. Krupin T., Liebmann J. M., Greenfield D. S., Ritch R., Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. American Journal of Ophthalmology. 2011;151(4):671–681. doi: 10.1016/j.ajo.2010.09.026.
    1. Quaranta L., Katsanos A., Floriani I., Riva I., Russo A., Konstas A. G. P. Circadian intraocular pressure and blood pressure reduction with timolol 0.5% solution and timogel 0.1% in patients with primary open-angle glaucoma. Journal of Clinical Pharmacology. 2012;52(10):1552–1557. doi: 10.1177/0091270011420254.
    1. Quaranta L., Miglior S., Floriani I., Pizzolante T., Konstas A. G. P. Effects of the timolol-dorzolamide fixed combination and latanoprost on circadian diastolic ocular perfusion pressure in glaucoma. Investigative Ophthalmology and Visual Science. 2008;49(10):4226–4231. doi: 10.1167/iovs.08-1744.
    1. Konstas A. G. P., Quaranta L., Yan D. B., et al. Twenty-four hour efficacy with the dorzolamide/timolol-fixed combination compared with the brimonidine/timolol-fixed combination in primary open-angle glaucoma. Eye. 2012;26(1):80–87. doi: 10.1038/eye.2011.239.
    1. Bournias T. E., Lai J. Brimonidine tartrate 0.15%, dorzolamide hydrochloride 2%, and brinzolamide 1% compared as adjunctive therapy to prostaglandin analogs. Ophthalmology. 2009;116(9):1719–1724. doi: 10.1016/j.ophtha.2009.03.050.
    1. Day D. G., Hollander D. A. Brimonidine purite 0.1% versus brinzolamide 1% as adjunctive therapy to latanoprost in patients with glaucoma or ocular hypertension. Current Medical Research and Opinion. 2008;24(5):1435–1442. doi: 10.1185/030079908X301848.
    1. Reis R., Queiroz C. F., Santos L. C., Avila M. P., Magacho L. A randomized, investigator-masked, 4-week study comparing timolol maleate 0.5%, brinzolamide 1%, and brimonidine tartrate 0.2% as adjunctive therapies to travoprost 0.004% in adults with primary open-angle glaucoma or ocular hypertension. Clinical Therapeutics. 2006;28(4):552–559. doi: 10.1016/j.clinthera.2006.04.007.
    1. Nguyen Q. H., McMenemy M. G., Realini T., Whitson J. T., Goode S. M. Phase 3 randomized 3-month trial with an ongoing 3-month safety extension of fixed-combination brinzolamide 1%/brimonidine 0.2% Journal of Ocular Pharmacology and Therapeutics. 2013;29(3):290–297. doi: 10.1089/jop.2012.0235.
    1. Katz G., DuBiner H., Samples J., Vold S., Sall K. Three-month randomized trial of fixed-combination brinzolamide, 1%, and brimonidine, 0.2% JAMA Ophthalmology. 2013;131(6):724–730. doi: 10.1001/jamaophthalmol.2013.188.
    1. Realini T., Nguyen Q. H., Katz G., Dubiner H. Fixed-combination brinzolamide 1%/brimonidine 0.2% vs monotherapy with brinzolamide or brimonidine in patients with open-angle glaucoma or ocular hypertension: results of a pooled analysis of two phase 3 studies. Eye. 2013;27(7):841–847. doi: 10.1038/eye.2013.83.
    1. Aung T., Laganovska G., Hernandez Paredes T. J., Branch J. D., Tsorbatzoglou A., Goldberg I. Twice-daily brinzolamide/brimonidine fixed combination versus brinzolamide or brimonidine in open-angle glaucoma or ocular hypertension. Ophthalmology. 2014;121(12):2348–2355. doi: 10.1016/j.ophtha.2014.06.022.
    1. Narayanaswamy A., Neog A., Baskaran M., et al. A randomized, crossover, open label pilot study to evaluate the efficacy and safety of Xalatan® in comparison with generic Latanoprost (Latoprost) in subjects with primary open angle glaucoma or ocular hypertension. Indian Journal of Ophthalmology. 2007;55(2):127–131. doi: 10.4103/0301-4738.30707.
    1. Kahook M. Y., Fechtner R. D., Katz L. J., Noecker R. J., Ammar D. A. A comparison of active ingredients and preservatives between brand name and generic topical glaucoma medications using liquid chromatography-tandem mass spectrometry. Current Eye Research. 2012;37(2):101–108. doi: 10.3109/02713683.2011.631722.
    1. Fiscella R. G., Gaynes B. I., Jensen M. Equivalence of generic and brand-name ophthalmic products. American Journal of Health-System Pharmacy. 2001;58(7):616–617.
    1. Mammo Z. N., Flanagan J. G., James D. F., Trope G. E. Generic versus brand-name North American topical glaucoma drops. Canadian Journal of Ophthalmology. 2012;47(1):55–61. doi: 10.1016/j.jcjo.2011.12.004.
    1. Van Santvliet L., Ludwig A. Determinants of eye drop size. Survey of Ophthalmology. 2004;49(2):197–213. doi: 10.1016/j.survophthal.2003.12.009.
    1. Loftsson T., Jansook P., Stefánsson E. Topical drug delivery to the eye: dorzolamide. Acta Ophthalmologica. 2012;90(7):603–608. doi: 10.1111/j.1755-3768.2011.02299.x.
    1. Tanihara H., Inoue T., Yamamoto T., Kuwayama Y., Abe H., Araie M. Phase 2 randomized clinical study of a Rho kinase inhibitor, k-115, in primary open-angle glaucoma and ocular hypertension. American Journal of Ophthalmology. 2013;156(4):731–e2. doi: 10.1016/j.ajo.2013.05.016.
    1. Tanihara H., Inoue T., Yamamoto T., et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmology. 2015;133(7):755–761. doi: 10.1001/jamaophthalmol.2015.0525.
    1. Tanihara H., Inoue T., Yamamoto T., et al. One-year clinical evaluation of 0.4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension. Acta Ophthalmologica. 2016;94(1):e26–e34. doi: 10.1111/aos.12829.
    1. Zhong Y., Yang Z., Huang W.-C., Luo X. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochimica et Biophysica Acta (BBA)—General Subjects. 2013;1830(4):2882–2890. doi: 10.1016/j.bbagen.2013.01.005.
    1. Agarwal R., Agarwal P. Newer targets for modulation of intraocular pressure: focus on adenosine receptor signaling pathways. Expert Opinion on Therapeutic Targets. 2014;18(5):527–539. doi: 10.1517/14728222.2014.888416.
    1. Karl M. O., Peterson-Yantorno K., Civan M. M. Cell-specific differential modulation of human trabecular meshwork cells by selective adenosine receptor agonists. Experimental Eye Research. 2007;84(1):126–134. doi: 10.1016/j.exer.2006.09.007.
    1. Rasmussen C. A., Kaufman P. L., Ritch R., Haque R., Brazzell R. K., Vittitow J. L. Latrunculin B reduces intraocular pressure in human ocular hypertension and primary open-angle glaucoma. Translational Vision Science & Technology. 2014;3(5, article 1) doi: 10.1167/tvst.3.5.1.
    1. Lusthaus J. A., Goldberg I. Emerging drugs to treat glaucoma: targeting prostaglandin F and E receptors. Expert Opinion on Emerging Drugs. 2016;21(1):117–128. doi: 10.1517/14728214.2016.1151001.
    1. Doozandeh A., Yazdani S. Neuroprotection in glaucoma. Journal of Ophthalmic and Vision Research. 2016;11(2):209–220. doi: 10.4103/2008-322x.183923.
    1. Tressler C. S., Beatty R., Lemp M. A. Preservative use in topical glaucoma medications. Ocular Surface. 2011;9(3):140–158. doi: 10.1016/s1542-0124(11)70024-6.
    1. Noecker R., Miller K. V. Benzalkonium chloride in glaucoma medications. Ocular Surface. 2011;9(3):159–162. doi: 10.1016/S1542-0124(11)70025-8.
    1. Mathews P. M., Ramulu P. Y., Friedman D. S., Utine C. A., Akpek E. K. Evaluation of ocular surface disease in patients with glaucoma. Ophthalmology. 2013;120(11):2241–2248. doi: 10.1016/j.ophtha.2013.03.045.
    1. Konstas A. G. P., Quaranta L., Realini T. Overview of the BAK-free travoprost/timolol BAK-free fixed combination. Expert Opinion on Pharmacotherapy. 2012;13(5):757–766. doi: 10.1517/14656566.2012.662485.
    1. Feldman R. M., Tanna A. P., Gross R. L., et al. Comparison of the ocular hypotensive efficacy of adjunctive brimonidine 0.15% or brinzolamide 1% in combination with travoprost 0.004% Ophthalmology. 2007;114(7):1248.e2–1254.e2. doi: 10.1016/j.ophtha.2007.03.012.
    1. O'Connor D. J., Martone J. F., Mead A. Additive intraocular pressure lowering effect of various medications with latanoprost. American Journal of Ophthalmology. 2002;133(6):836–837. doi: 10.1016/s0002-9394(02)01418-6.
    1. Realini T. D. A prospective, randomized, investigator-masked evaluation of the monocular trial in ocular hypertension or open-angle glaucoma. Ophthalmology. 2009;116(7):1237–1242. doi: 10.1016/j.ophtha.2009.01.054.
    1. Bhorade A. M., Wilson B. S., Gordon M. O., et al. The utility of the monocular trial: data from the ocular hypertension treatment study. Ophthalmology. 2010;117(11):2047–2054. doi: 10.1016/j.ophtha.2010.02.020.
    1. Krishna R., DeBry P. W., Waldman C. W., Koulen P. Comparing the efficacy of the monocular trial treatment paradigm with multiple measurements of intraocular pressure before and after treatment initiation in primary open-angle glaucoma. Clinical Ophthalmology. 2012;6(1):491–496. doi: 10.2147/opth.s29858.
    1. The Glaucoma Laser Trial (GLT) and glaucoma laser trial follow-up study: 7. Results. Glaucoma Laser Trial Research Group. American Journal of Ophthalmology. 1995;120(6):718–731.
    1. Katz L. J., Steinmann W. C., Kabir A., Molineaux J., Wizov S. S., Marcellino G. Selective laser trabeculoplasty versus medical therapy as initial treatment of glaucoma: a prospective, randomized trial. Journal of Glaucoma. 2012;21(7):460–468. doi: 10.1097/ijg.0b013e318218287f.
    1. Lee J. W. Y., Yau G. S. K., Yick D. W. F., Yuen C. Y. F. Micropulse laser trabeculoplasty for the treatment of open-angle glaucoma. Medicine. 2015;94(49) doi: 10.1097/md.0000000000002075.e2075
    1. Brandão L. M., Grieshaber M. C. Update on minimally invasive glaucoma surgery (MIGS) and new implants. Journal of Ophthalmology. 2013;2013:12. doi: 10.1155/2013/705915.705915
    1. Roelofs K., Arora S., Dorey M. W. Implantation of 2 trabecular microbypass stents in a patient with primary open-angle glaucoma refractory to previous glaucoma-filtering surgeries. Journal of Cataract and Refractive Surgery. 2014;40(8):1322–1324. doi: 10.1016/j.jcrs.2014.06.017.
    1. Grieshaber M. C., Stegmann R., Grieshaber H. R., Meyer P. Novel device for expanding Schlemm's canal: a morphological study. British Journal of Ophthalmology. 2015;99(7):875–877. doi: 10.1136/bjophthalmol-2014-305540.
    1. Olthoff C. M. G., Schouten J. S. A. G., Van De Borne B. W., Webers C. A. B. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension: an evidence-based review. Ophthalmology. 2005;112(6):953–961. doi: 10.1016/j.ophtha.2004.12.035.
    1. Tsai J. C., McClure C. A., Ramos S. E., Schlundt D. G., Pichert J. W. Compliance barriers in glaucoma: a systematic classification. Journal of Glaucoma. 2003;12(5):393–398. doi: 10.1097/00061198-200310000-00001.
    1. Friedman D. S., Quigley H. A., Gelb L., et al. Using pharmacy claims data to study adherence to glaucoma medications: methodology and findings of the Glaucoma Adherence and Persistency Study (GAPS) Investigative Ophthalmology & Visual Science. 2007;48(11):5052–5057. doi: 10.1167/iovs.07-0290.
    1. Schwartz G. F., Quigley H. A. Adherence and persistence with glaucoma therapy. Survey of Ophthalmology. 2008;53(supplement 1):S57–S68. doi: 10.1016/j.survophthal.2008.08.002.
    1. Sayner R., Carpenter D. M., Blalock S. J., et al. Accuracy of patient-reported adherence to glaucoma medications on a visual analog scale compared with electronic monitors. Clinical Therapeutics. 2015;37(9):1975–1985. doi: 10.1016/j.clinthera.2015.06.008.
    1. Vrijens B., Urquhart J. Methods for measuring, enhancing, and accounting for medication adherence in clinical trials. Clinical Pharmacology and Therapeutics. 2014;95(6):617–626. doi: 10.1038/clpt.2014.59.
    1. Cook P. F., Schmiege S. J., Mansberger S. L., Kammer J., Fitzgerald T., Kahook M. Y. Predictors of adherence to glaucoma treatment in a multisite study. Annals of Behavioral Medicine. 2015;49(1):29–39. doi: 10.1007/s12160-014-9641-8.
    1. Cate H., Bhattacharya D., Clark A., Holland R., Broadway D. C. Patterns of adherence behaviour for patients with glaucoma. Eye. 2013;27(4):545–553. doi: 10.1038/eye.2012.294.
    1. Domino F. J. Improving adherence to treatment for hypertension. American Family Physician. 2005;71(11):2089–2090.
    1. Djafari F., Lesk M. R., Harasymowycz P. J., Desjardins D., Lachaine J. Determinants of adherence to glaucoma medical therapy in a long-term patient population. Journal of Glaucoma. 2009;18(3):238–243. doi: 10.1097/ijg.0b013e3181815421.
    1. Loon S. C., Jin J., Jin Goh M. The relationship between quality of life and adherence to medication in glaucoma patients in Singapore. Journal of Glaucoma. 2015;24(5):e36–e42. doi: 10.1097/ijg.0000000000000007.
    1. Stryker J. E., Beck A. D., Primo S. A., et al. An exploratory study of factors influencing glaucoma treatment adherence. Journal of Glaucoma. 2010;19(1):66–72. doi: 10.1097/IJG.0b013e31819c4679.
    1. Kripalani S., Yao X., Haynes R. B. Interventions to enhance medication adherence in chronic medical conditions: a systematic review. Archives of Internal Medicine. 2007;167(6):540–550. doi: 10.1001/archinte.167.6.540.
    1. Gray T. A., Fenerty C., Harper R., et al. Individualised patient care as an adjunct to standard care for promoting adherence to ocular hypotensive therapy: an exploratory randomised controlled trial. Eye. 2012;26(3):407–417. doi: 10.1038/eye.2011.269.
    1. Beckers H. J. M., Webers C. A. B., Busch M. J. W. M., Brink H. M. A., Colen T. P., Schouten J. S. A. G. Adherence improvement in Dutch glaucoma patients: a randomized controlled trial. Acta Ophthalmologica. 2013;91(7):610–618. doi: 10.1111/j.1755-3768.2012.02571.x.
    1. Norell S. E. Improving medication compliance: a randomised clinical trial. The British Medical Journal. 1979;2(6197):1031–1033. doi: 10.1136/bmj.2.6197.1031.
    1. Okeke C. O., Quigley H. A., Jampel H. D., et al. Interventions improve poor adherence with once daily glaucoma medications in electronically monitored patients. Ophthalmology. 2009;116(12):2286–2293. doi: 10.1016/j.ophtha.2009.05.026.
    1. Sleath B., Blalock S. J., Carpenter D. M., et al. Ophthalmologist-patient communication, self-efficacy, and glaucoma medication adherence. Ophthalmology. 2015;122(4):748–754. doi: 10.1016/j.ophtha.2014.11.001.
    1. Dreer L. E., Owsley C., Campbell L., Gao L., Wood A., Girkin C. A. Feasibility, patient acceptability, and preliminary efficacy of a culturally informed, health promotion program to improve glaucoma medication adherence among African Americans: ‘Glaucoma Management Optimism for African Americans Living with Glaucoma’ (GOAL) Current Eye Research. 2016;41(1):50–58. doi: 10.3109/02713683.2014.1002045.
    1. Gray T. A., Orton L. C., Henson D., Harper R., Waterman H. Interventions for improving adherence to ocular hypotensive therapy. Cochrane Database of Systematic Reviews. 2009;(2)CD006132
    1. Sleath B., Carpenter D. M., Blalock S. J., et al. Applying the resources and supports in self-management framework to examine ophthalmologist-patient communication and glaucoma medication adherence. Health Education Research. 2015;30(5):693–705. doi: 10.1093/her/cyv034.
    1. Saeedi O. J., Luzuriaga C., Ellish N., Robin A. Potential limitations of e-mail and text messaging in improving adherence in glaucoma and ocular hypertension. Journal of Glaucoma. 2015;24(5):e95–e102. doi: 10.1097/ijg.0000000000000150.
    1. Glaucoma Research Foundation. Alternative Therapies for Glaucoma. .
    1. Rhee D. J., Spaeth G. L., Myers J. S., et al. Prevalence of the use of complementary and alternative medicine for glaucoma. Ophthalmology. 2002;109(3):438–443. doi: 10.1016/S0161-6420(01)01030-2.
    1. Ford B. A., Gooi M., Carlsson A., Crichton A. C. Morning dosing of once-daily glaucoma medication is more convenient and may lead to greater adherence than evening dosing. Journal of Glaucoma. 2013;22(1):1–4. doi: 10.1097/IJG.0b013e31822e622f.
    1. Stein J. D., Shekhawat N., Talwar N., Balkrishnan R. Impact of the introduction of generic latanoprost on glaucoma medication adherence. Ophthalmology. 2015;122(4):738–747. doi: 10.1016/j.ophtha.2014.11.022.
    1. Kholdebarin R., Campbell R. J., Jin Y.-P., et al. Multicenter study of compliance and drop administration in glaucoma. Canadian Journal of Ophthalmology. 2008;43(4):454–461. doi: 10.3129/I08-076.

Source: PubMed

3
Abonner