Within-Subject Reliability and between-Subject Variability of Oxidative Stress Markers in Saliva of Healthy Subjects: A Longitudinal Pilot Study

Iva Z Alajbeg, Ivana Lapić, Dunja Rogić, Lea Vuletić, Ana Andabak Rogulj, Davor Illeš, Dubravka Knezović Zlatarić, Tomislav Badel, Ema Vrbanović, Ivan Alajbeg, Iva Z Alajbeg, Ivana Lapić, Dunja Rogić, Lea Vuletić, Ana Andabak Rogulj, Davor Illeš, Dubravka Knezović Zlatarić, Tomislav Badel, Ema Vrbanović, Ivan Alajbeg

Abstract

The present study evaluated diurnal variations and day-to-day fluctuations of salivary oxidative stress (OS) markers in healthy adult individuals. Whole unstimulated saliva was collected at 2 time intervals over 3 consecutive days. Glutathione peroxidase (GPX), superoxide dismutase (SOD), total antioxidant capacity (TAC), and uric acid (UA) were analyzed using spectrophotometric methods, while 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) were determined using immunoassays. No significant differences for salivary OS markers between men and women were observed. For all examined OS markers, no significant day-to-day variations were demonstrated. Significant diurnal variations were found in salivary GPX, TAC and MDA levels. For SOD, TAC, GPX, and UA, good-to-moderate intraindividual coefficients of variations (CVs) were observed in more than 75% of the subjects. For MDA and 8-OHdG, intraindividual CVs > 35% were observed in 60% and 40% of the subjects, respectively. Between-subject variance was wide for all examined OS markers (CV% 30.08%-85.70%). Due to high intraindividual variability in the salivary concentrations of MDA and 8-OHdG, those markers cannot be reliably verified based on single measurements and multiple measurements over several days would provide more reliable information. Salivary SOD, TAC, GPX, and UA proved stable across three days of measurement. Trial Registration. ClinicalTrials.gov NCT03029494. Registered on 2017-01-19.

Figures

Figure 1
Figure 1
Salivary glutathione peroxidase (GPX) (a), superoxide dismutase (SOD) (b), total antioxidant capacity (TAC) (c), uric acid (UA) (d), 8-hydroxydeoxyguanosine (8-OHdG) (e), and malondialdehyde (MDA) (f) levels in female and male participants. Box plot represents individual subjects' data. Data are presented as upper value, lower value, mean, and standard deviation. Light grey represents morning measurements; dark grey represents afternoon measurement.
Figure 2
Figure 2
Intraindividual variability of glutathione peroxidase (GPX) (a), superoxide dismutase (SOD) (b), total antioxidant capacity (TAC) (c), uric acid (UA) (d), 8-hydroxydeoxyguanosine (8-OHdG) (e), and malondialdehyde (MDA) (f).

References

    1. Weidinger A., Kozlov A. V. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;5(2):472–484. doi: 10.3390/biom5020472.
    1. Liu T., Zhong S., Liao X., et al. A meta-analysis of oxidative stress markers in depression. PLoS One. 2015;10(10, article e0138904) doi: 10.1371/journal.pone.0138904.
    1. Rubio C. P., Hernández-Ruiz J., Martinez-Subiela S., Tvarijonaviciute A., Ceron J. J. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Veterinary Research. 2016;12(1):p. 166. doi: 10.1186/s12917-016-0792-7.
    1. Khoubnasabjafari M., Ansarin K., Jouyban A. Salivary malondialdehyde as an oxidative stress biomarker in oral and systemic diseases. Journal of Dental Research, Dental Clinics, Dental Prospects. 2016;10(2):71–74. doi: 10.15171/joddd.2016.011.
    1. Almerich-Silla J. M., Montiel-Company J. M., Pastor S., Serrano F., Puig-Silla M., Dasi F. Oxidative stress parameters in saliva and its association with periodontal disease and types of bacteria. Disease Markers. 2015;2015:7. doi: 10.1155/2015/653537.653537
    1. Forlenza M. J., Miller G. E. Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosomatic Medicine. 2006;68:1–7. doi: 10.1097/01.psy.0000195780.37277.2a.
    1. Torres-Cuevas I., Aupi M., Asensi M. A., Vento M., Ortega Á., Escobar J. 7,8-hydroxy-2′-deoxyguanosine/2′-deoxiguanosine ratio determined in hydrolysates of brain DNA by ultrachromatrography coupled to tandem mass spectrometry. Talanta. 2017;170:97–102. doi: 10.1016/j.talanta.2017.03.072.
    1. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews. 2014;94(2):329–354. doi: 10.1152/physrev.00040.2012.
    1. Dhalla N. S., Temsah R. M., Netticadan T. Role of oxidative stress in cardiovascular diseases. Journal of Hypertension. 2000;18(6):655–673. doi: 10.1097/00004872-200018060-00002.
    1. Kim G. H., Kim J. E., Rhie S. J., Yoon S. The role of oxidative stress in neurodegenerative diseases. Experimental Neurobiology. 2015;24(4):325–340. doi: 10.5607/en.2015.24.4.325.
    1. Li S., Tan H. Y., Wang N., et al. The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences. 2015;16:26087–26124. doi: 10.3390/ijms161125942.
    1. Datta S., Kundu S., Ghosh P., De S., Ghosh A., Chatterjee M. Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clinical Rheumatology. 2014;33(11):1557–1564. doi: 10.1007/s10067-014-2597-z.
    1. Goldfarb A. H., Garten R. S., Cho C., Chee P. D., Chambers L. A. Effects of a fruit/berry/vegetable supplement on muscle function and oxidative stress. Medicine & Science in Sports & Exercise. 2011;43(3):501–508. doi: 10.1249/MSS.0b013e3181f1ef48.
    1. Woelber J. P., Bremer K., Vach K., et al. An oral health optimized diet can reduce gingival and periodontal inflammation in humans - a randomized controlled pilot study. BMC Oral Health. 2016;17:p. 28. doi: 10.1186/s12903-016-0257-1.
    1. Wu X., Cai H., Xiang Y. B., et al. Intra-person variation of urinary biomarkers of oxidative stress and inflammation. Cancer Epidemiology Biomarkers & Prevention. 2010;19(4):947–952. doi: 10.1158/1055-9965.EPI-10-0046.
    1. Lopez-Jornet P., Martinez-Canovas A., Pons-Fuster A. Salivary biomarkers of oxidative stress and quality of life in patients with oral lichen planus. Geriatrics & Gerontology International. 2014;14(3):654–659. doi: 10.1111/ggi.12153.
    1. Agha-Hosseini F., Mirzaii-Dizgah I., Farmanbar N., Abdollahi M. Oxidative stress status and DNA damage in saliva of human subjects with oral lichen planus and oral squamous cell carcinoma. Journal of Oral Pathology & Medicine. 2012;41(10):736–740. doi: 10.1111/j.1600-0714.2012.01172.x.
    1. Sezer U., Ciçek Y., Canakçi C. F. Increased salivary levels of 8-hydroxydeoxyguanosine may be a marker for disease activity for periodontitis. Disease Markers. 2012;32(3):165–172. doi: 10.3233/DMA-2011-0876.
    1. Mohamed H. G., Idris S. B., Ahmed M. F., et al. Influence of type 2 diabetes on local production of inflammatory molecules in adults with and without chronic periodontitis: a cross-sectional study. BMC Oral Health. 2015;15:p. 86. doi: 10.1186/s12903-015-0073-z.
    1. Basi D. L., Velly A. M., Schiffman E. L., et al. Human temporomandibular joint and myofascial pain biochemical profiles: a case-control study. Journal of Oral Rehabilitation. 2012;39:326–337. doi: 10.1111/j.1365-2842.2011.02271.x.
    1. Rodríguez de Sotillo D., Velly A. M., Hadley M., Fricton J. R. Evidence of oxidative stress in temporomandibular disorders: a pilot study. Journal of Oral Rehabilitation. 2011;38:722–728. doi: 10.1111/j.1365-2842.2011.02216.x.
    1. Milam S. B., Zardeneta G., Schmitz J. P. Oxidative stress and degenerative temporomandibular joint disease: a proposed hypothesis. Journal of Oral and Maxillofacial Surgery. 1998;56(2):214–223. doi: 10.1016/s0278-2391(98)90872-2.
    1. Metgud R., Patel S. Serum and salivary levels of albumin as diagnostic tools for oral pre-malignancy and oral malignancy. Biotechnic & Histochemistry. 2014;89(1):8–13. doi: 10.3109/10520295.2013.793394.
    1. Kamodyová N., Tóthová L., Celec P. Salivary markers of oxidative stress and antioxidant status: influence of external factors. Disease Markers. 2013;34(5):313–321. doi: 10.3233/DMA-130975.
    1. Lettrichová I., Tóthová L., Hodosy J., Behuliak M., Celec P. Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals. Redox Report. 2016;21(1):24–30. doi: 10.1179/1351000215Y.0000000009.
    1. Behuliak M., Pálffy R., Gardlík R., Hodosy J., Halcák L., Celec P. Variability of thiobarbituric acid reacting substances in saliva. Disease Markers. 2009;26(2):49–53. doi: 10.3233/DMA-2009-0606.
    1. Kato I., Ren J., Heilbrun L. K., Djuric Z. Intra- and inter-individual variability in measurements of biomarkers for oxidative damage in vivo: nutrition and breast health study. Biomarkers. 2006;11(2):143–152. doi: 10.1080/13547500600565693.
    1. Al-Delaimy W. K., Jansen E. H., Peeters P. H., et al. Reliability of biomarkers of iron status, blood lipids, oxidative stress, vitamin D, C-reactive protein and fructosamine in two Dutch cohorts. Biomarkers. 2006;11(4):370–382. doi: 10.1080/13547500600799748.
    1. Qing Z., Ling-Ling E., Dong-Sheng W., Hong-Chen L. Relationship of advanced oxidative protein products in human saliva and plasma: age- and gender-related changes and stability during storage. Free Radical Research. 2012;46(10):1201–1206. doi: 10.3109/10715762.2012.700113.
    1. Youssef H., Groussard C., Machefer G., et al. Comparison of total antioxidant capacity of salivary, capillary and venous samplings: interest of the salivary total antioxidant capacity on triathletes during training season. The Journal of Sports Medicine and Physical Fitness. 2008;48:522–529.
    1. Iannitti T., Rottigni V., Palmieri B. Role of free radicals and antioxidant defences in oral cavity-related pathologies. Journal of Oral Pathology & Medicine. 2012;41(9):649–661. doi: 10.1111/j.1600-0714.2012.01143.x.
    1. Sculley D. V., Langley-Evans S. C. Periodontal disease is associated with lower antioxidant capacity in whole saliva and evidence of increased protein oxidation. Clinical Science. 2003;105(2):167–172. doi: 10.1042/CS20030031.
    1. Bloomer R. J., Fisher-Wellman K. H. Lower postprandial oxidative stress in women compared with men. Gender Medicine. 2010;7(4):340–349. doi: 10.1016/j.genm.2010.07.001.
    1. Ahmadi-Motamayel F., Goodarzi M. T., Jamshidi Z., Kebriaei R. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: a case-control study. Frontiers in Physiology. 2017;8:p. 189. doi: 10.3389/fphys.2017.00189.
    1. Borisenkov M. F., Erunova L. A., Lyuseva E. M., Pozdeeva N. V. Diurnal changes in the total antioxidant activity of human saliva. Human Physiology. 2007;33(3):375–376. doi: 10.1134/s0362119707030176.
    1. Soleimani Rad S., Abbasalizadeh S., Ghorbani Haghjo A., Sadagheyani M., Montaseri A., Soleimani Rad J. Evaluation of the melatonin and oxidative stress markers level in serum of fertile and infertile women. Iranian Journal of Reproductive Medicine. 2015;13(7):439–444.
    1. Benot S., Molinero P., Soutto M., Goberna R., Guerrero J. M. Circadian variations in the rat serum total antioxidant status: correlation with melatonin levels. Journal of Pineal Research. 1998;25:1–4. doi: 10.1111/j.1600-079x.1998.tb00378.x.
    1. Benot S., Goberna R., Reiter R. J., Garcia-Mauriño S., Osuna C., Guerrero J. M. Physiological levels of melatonin contribute to the antioxidant capacity of human serum. Journal of Pineal Research. 1999;27:59–64. doi: 10.1111/j.1600-079x.1999.tb00597.x.
    1. Rai B., Kaur J., Catalina M., Anand S. C., Jacobs R., Teughels W. Effect of simulated microgravity on salivary and serum oxidants, antioxidants, and periodontal status. Journal of Periodontology. 2011;82(10):1478–1482. doi: 10.1902/jop.2011.100711.
    1. Madi M., Babu S., Kumari S., et al. Status of serum and salivary levels of superoxide dismutase in type 2 diabetes mellitus with oral manifestations: a case control study. Ethiopian Journal of Health Sciences. 2016;26(6):523–532. doi: 10.4314/ejhs.v26i6.4.
    1. Méjean C., Morzel M., Neyraud E., et al. Salivary composition is associated with liking and usual nutrient intake. PLoS One. 2015;10(9, article e0137473) doi: 10.1371/journal.pone.0137473.
    1. Evans L. W., Omaye S. T. Use of saliva biomarkers to monitor efficacy of vitamin C in exercise-induced oxidative stress. Antioxidants. 2017;6(1):p. 5. doi: 10.3390/antiox6010005.
    1. Hamzany Y., Feinmesser R., Shpitzer T., et al. Is human saliva an indicator of the adverse health effects of using mobile phones? Antioxidants & Redox Signaling. 2013;18(6):622–627. doi: 10.1089/ars.2012.4751.
    1. Atsumi T., Fujisawa S., Nakabayashi Y., Kawarai T., Yasui T., Tonosaki K. Pleasant feeling from watching a comical video enhances free radical-scavenging capacity in human whole saliva. Journal of Psychosomatic Research. 2004;56(3):377–379. doi: 10.1016/S0022-3999(03)00064-3.
    1. Tsuber V., Kadamov Y., Tarasenko L. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men. PLoS One. 2014;9, article e115048 doi: 10.1371/journal.pone.0115048.
    1. Singh R., Singh R. K., Tripathi A. K., et al. Circadian periodicity of plasma lipid peroxides and anti-oxidant enzymes in pulmonary tuberculosis. Indian Journal of Clinical Biochemistry. 2004;19(1):14–20. doi: 10.1007/BF02872382.
    1. Astaneie F., Afshari M., Mojtahedi A., et al. Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients. Archives of Medical Research. 2005;36(4):376–381. doi: 10.1016/j.arcmed.2005.03.007.
    1. Rezaie A., Ghorbani F., Eshghtork A., et al. Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-β1 in relation to disease activity in Crohn’s disease patients. Annals of the New York Academy of Sciences. 2006;1091:110–122. doi: 10.1196/annals.1378.060.
    1. Jahanshahi G., Motavasel V., Rezaie A., Hashtroudi A. A., Daryani N. E., Abdollahi M. Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Digestive Diseases and Sciences. 2004;49(11-12):1752–1757. doi: 10.1007/s10620-004-9564-5.

Source: PubMed

3
Abonner