MRI of the lung (3/3)-current applications and future perspectives

Jürgen Biederer, S Mirsadraee, M Beer, F Molinari, C Hintze, G Bauman, M Both, E J R Van Beek, J Wild, M Puderbach, Jürgen Biederer, S Mirsadraee, M Beer, F Molinari, C Hintze, G Bauman, M Both, E J R Van Beek, J Wild, M Puderbach

Abstract

Background: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women.

Methods: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value.

Results: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice.

Conclusion: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations.

Figures

Fig. 1
Fig. 1
A 29-year-old female with cystic fibrosis. The axial T2-weighted (BLADE; a) and the volumetric contrast-enhanced 3D-GRE (VIBE; b) breath-hold acquisitions show severe bronchiectasis, bronchial wall thickening, mucus plugging, pleural effusion as well as a destructed middle lobe. The perfusion subtraction image (c) shows a severely impaired perfusion pattern with loss of perfusion in several areas. The maximum enhancement (MAX) and time to peak anhancement (TTP maps) allow for a further characterisation of the perfusion impairment. Most areas with impaired perfusion show a reduced (MAX map) and delaid (TTP map) perfusion. Notice the area in the left upper lobe with reduced but not delayed perfusion (arrowhead)
Fig. 2
Fig. 2
A 55-year-old patient with acute pulmonary embolism. Coronal steady-state free precession images acquired during free breathing (a) and contrast-enhanced coronal 3d flash angiogram acquired in breathhold (b; embolus inside the right lower lobe artery circled); c series of subtracted images from the first pass perfusion study, perfusion deficits marked with open arrows at the image obtained at peak lung enhancement; 1.5-T MRI scanner
Fig. 3
Fig. 3
A 56-year-old female patient with small cell lung cancer. The transverse T2-weighted fat-saturated (a) and T1-weighted contrast-enhanced fat-saturated 3D-GRE images (b, c) show a large, centrally necrotic mass in the left upper lobe with large peri-hilar lymph node metastases. Note the high soft tissue contrast between alelectatic lung (open arrow), small rim of solid tumour (filled arrow) and colliquated central portion of the mass (asterisk)
Fig. 4
Fig. 4
A 13-year-old girl with suspected organising pneumonia (BOOP) in both lungs. Transverse T2-weighted TSE images (a) were acquired with the navigator technique (sample volume placed on the dome of the right liver lobe). The open arrow indicates an oval-shaped consolidation with pleural contact in the lower left lobe and moderate signal intensity. Coronal contrast-enhanced fat-saturated T1-weighted GRE images (b) were acquired with the breathhold technique. The open arrow indicates the oval-shaped consolidation in the lower left lobe with contrast enhancement; this is interpreted as an indicator of an active inflammatory process
Fig. 5
Fig. 5
Infiltrative disorder of the lung. Typical fibrotic changes in a patient with interstitial pulmonary fibrosis. Extensive reticulation and architectural distortion predominant in the subpleural regions of the lung are well demonstrated by the axial (a, b) and coronal (ce) MR images obtained using the half-Fourier single-shot fast spin echo (a, c, e) and post-constrast volume interpolated T1-weighted GRE (b, e) sequences
Fig. 6
Fig. 6
Subtle subpleural reticulation in a patient with fibrotic-predominant NSIP. The interlobular reticulation (thin arrows) is more evident after contrast administration (c and f). A perfusion defect (arrowhead in e) is associated to the peripheral fibrotic changes at the left lateral costo-phrenic angle (arrowheads in d and f)
Fig. 7
Fig. 7
Fibrosis associated with rounded consolidation. a) Subpleural reticular changes are visualised at the periphery of the lungs (thin arrows). b) After contrast administration the subtle linear enhancement at the pulmonary-chest wall interface indicates abnormal findings related to subpleural fibrosis (thin arrows). A rounded consolidation is present on the left in the lingula suspected for lung tumour in ILD (asterisk)
Fig. 8
Fig. 8
Bilateral hilar and mediastinal adenomegalies in sarcoidosis. Node enlargement (arrows) is demonstrated with gradient echo images before (a) and after administration of contrast material (b). Coronal perfusion images indicate vascular compression at the right hilum (arrow, c) and a wedge-shaped perfusion defect (asterisk, d)
Fig. 9
Fig. 9
Twenty-three year-old female with acute pulmonary embolism at the time point of diagnosis (a, b) and at follow-up study after 6 months (c, d). The initial dynamic contrast enhanced (DCE) study (a) as well as the perfusion-weighted Fourier-decomposition (FD) image (b) demonstrate multiple perfusion defects (open arrows). In the follow up study, both techniques (DCE; c and FD; d) demonstrate an almost homogeneous lung perfusion after effective anticoagulation

References

    1. Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor H-U, Biederer J. MR imaging of the chest: a practical approach at 1.5T. Eur J Radiol. 2007;64:345–355. doi: 10.1016/j.ejrad.2007.08.009.
    1. Biederer J, Hintze C, Fabel M, Jakob PM, Horger W, Graessner J, Bolster BD, Heller M. MRI of the lung—ready…get set…go! Magnetom Flash. 2011;46:6–15.
    1. Biederer J, Both M, Graessner J, Liess C, Jakob P, Reuter M, Heller M. Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. Radiology. 2003;226:242–249. doi: 10.1148/radiol.2261011974.
    1. Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J, Heller M. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol. 2002;12:378–384. doi: 10.1007/s00330-001-1147-7.
    1. Biederer J, Hintze C, Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008;8:125–130. doi: 10.1102/1470-7330.2008.0018.
    1. Biederer J, Schoene A, Freitag S, Reuter M, Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003;227:475–483. doi: 10.1148/radiol.2272020635.
    1. Biederer J, Busse I, Grimm J, Reuter M, Muhle C, Freitag S, Heller M. Sensitivity of MRI in detecting alveolar Infiltrates: experimental studies. Rofo. 2002;174:1033–1039. doi: 10.1055/s-2002-32923.
    1. Hintze C, Dinkel J, Biederer J, Heussel CP, Puderbach M. New procedures. Comprehensive staging of lung cancer by MRI. Radiologe. 2010;50:699–705. doi: 10.1007/s00117-009-1959-z.
    1. Biederer J, Bauman G, Hintze C, Fabel M, Both M. Magnetresonanztomographie. Der Pneumologe. 2011;8:234–242. doi: 10.1007/s10405-010-0440-z.
    1. Stern M, Wiedemann B, Wenzlaff P. From registry to quality management: the German Cystic Fibrosis Quality Assessment project 1995 2006. Eur Respir J. 2008;31:29–35. doi: 10.1183/09031936.00056507.
    1. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168:918–951. doi: 10.1164/rccm.200304-505SO.
    1. Jong PA, Mayo JR, Golmohammadi K, Nakano Y, Lequin MH, Tiddens HAWM, Aldrich J, Coxson HO, Sin DD. Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med. 2006;173:199–203. doi: 10.1164/rccm.200505-810OC.
    1. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmähl A, Fink C, Plathow C, Wiebel M, Müller FM, Kauczor HU. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol. 2007;17:716–724. doi: 10.1007/s00330-006-0373-4.
    1. Puderbach M, Eichinger M, Haeselbarth J, Ley S, Kopp-Schneider A, Tuengerthal S, Schmaehl A, Fink C, Plathow C, Müller FM, Kauczor HU. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol. 2007;42:715–725. doi: 10.1097/RLI.0b013e318074fd81.
    1. Failo R, Wielopolski PA, Tiddens HAWM, Hop WCJ, Mucelli RP, Lequin MH. Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn Reson Med. 2009;61:299–306. doi: 10.1002/mrm.21841.
    1. Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Müller F-M, Müller FM, Kauczor HU. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis–initial results. Eur Radiol. 2006;16:2147–2152. doi: 10.1007/s00330-006-0257-7.
    1. Eibel R, Herzog P, Dietrich O, Rieger CT, Ostermann H, Reiser MF, Schoenberg SO. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006;241:880–891. doi: 10.1148/radiol.2413042056.
    1. Rupprecht T, Böwing B, Kuth R, Deimling M, Rascher W, Wagner M. Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol. 2002;12:2752–2756.
    1. Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med. 1996;36:503–508. doi: 10.1002/mrm.1910360402.
    1. Theilmann RJ, Arai TJ, Samiee A, Dubowitz DJ, Hopkins SR, Buxton RB, Prisk GK. Quantitative MRI measurement of lung density must account for the change in T(2) (*) with lung inflation. J Magn Reson Imaging. 2009;30:527–534. doi: 10.1002/jmri.21866.
    1. Puderbach M, Risse F, Biederer J, Ley-Zaporozhan J, Ley S, Szabo G, Semmler W, Kauczor H-U. In vivo Gd-DTPA concentration for MR lung perfusion measurements: assessment with computed tomography in a porcine model. Eur Radiol. 2008;18:2102–2107. doi: 10.1007/s00330-008-0974-1.
    1. Risse F, Eichinger M, Kauczor H-U, Semmler W, Puderbach M. Improved visualization of delayed perfusion in lung MRI. Eur J Radiol. 2011;77:105–110. doi: 10.1016/j.ejrad.2009.07.025.
    1. Kuder TA, Risse F, Eichinger M, Ley S, Puderbach M, Kauczor H-U, Fink C. New method for 3D parametric visualization of contrast-enhanced pulmonary perfusion MRI data. Eur Radiol. 2008;18:291–297. doi: 10.1007/s00330-007-0742-7.
    1. Bhalla M, Turcios N, Aponte V, Jenkins M, Leitman BS, McCauley DI, Naidich DP. Cystic fibrosis: scoring system with thin-section CT. Radiology. 1991;179:783–788.
    1. Helbich TH, Heinz-Peer G, Eichler I, Wunderbaldinger P, Götz M, Wojnarowski C, Brasch RC, Herold CJ. Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology. 1999;213:537–544.
    1. Brody AS, Kosorok MR, Li Z, Broderick LS, Foster JL, Laxova A, Bandla H, Farrell PM. Reproducibility of a scoring system for computed tomography scanning in cystic fibrosis. J Thorac Imaging. 2006;21:14–21. doi: 10.1097/01.rti.0000203937.82276.ce.
    1. Eichinger M, Optazaite D-E, Kopp-Schneider A, Hintze C, Biederer J, Niemann A, Mall MA, Wielpütz MO, Kauczor H-U, Puderbach M (2011) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol
    1. Jong PA, Tiddens HAWM. Cystic fibrosis specific computed tomography scoring. Proc Am Thorac Soc. 2007;4:338–342. doi: 10.1513/pats.200611-175HT.
    1. Santamaria F, Grillo G, Guidi G, Rotondo A, Raia V, Ritis G, Sarnelli P, Caterino M, Greco L. Cystic fibrosis: when should high-resolution computed tomography of the chest be obtained? Pediatrics. 1998;101:908–913. doi: 10.1542/peds.101.5.908.
    1. Stein PD, Fowler SE, Goodman LR, Gottschalk A, Hales CA, Hull RD, Leeper KV, Popovich J, Quinn DA, Sos TA, Sostman HD, Tapson VF, Wakefield TW, Weg JG, Woodard PK. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006;354:2317–2327. doi: 10.1056/NEJMoa052367.
    1. Oudkerk M, Beek EJR, Wielopolski P, Ooijen PMA, Brouwers-Kuyper EMJ, Bongaerts AHH, Berghout A. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002;359:1643–1647. doi: 10.1016/S0140-6736(02)08596-3.
    1. Stein PD, Gottschalk A, Sostman HD, Chenevert TL, Fowler SE, Goodman LR, Hales CA, Hull RD, Kanal E, Leeper KV, Jr, Nadich DP, Sak DJ, Tapson VF, Wakefield TW, Weg JG, Woodard PK. Methods of Prospective Investigation of Pulmonary Embolism Diagnosis III (PIOPED III) Semin Nucl Med. 2008;38:462–470. doi: 10.1053/j.semnuclmed.2008.06.003.
    1. Kluge A, Luboldt W, Bachmann G. Acute pulmonary embolism to the subsegmental level: diagnostic accuracy of three MRI techniques compared with 16-MDCT. AJR Am J Roentgenol. 2006;187:W7–W14. doi: 10.2214/AJR.04.1814.
    1. Kluge A, Gerriets T, Stolz E, Dill T, Mueller K-D, Mueller C, Bachmann G. Pulmonary perfusion in acute pulmonary embolism: agreement of MRI and SPECT for lobar, segmental and subsegmental perfusion defects. Acta Radiol. 2006;47:933–940. doi: 10.1080/02841850600885377.
    1. Kluge A, Gerriets T, Müller C, Ekinci O, Neumann T, Dill T, Bachmann G. Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases. Rofo. 2005;177:1513–1521. doi: 10.1055/s-2005-858688.
    1. Hintze C, Biederer J, Wenz HW, Eberhardt R, Kauczor HU. MRI in staging of lung cancer. Radiologe. 2006;46(251–4):256–259.
    1. Yi CA, Shin KM, Lee KS, Kim B-T, Kim H, Kwon OJ, Choi JY, Chung MJ. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008;248:632–642. doi: 10.1148/radiol.2482071822.
    1. Ohba Y, Nomori H, Mori T, Ikeda K, Shibata H, Kobayashi H, Shiraishi S, Katahira K. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non-small cell lung cancer? J Thorac Cardiovasc Surg. 2009;138:439–445. doi: 10.1016/j.jtcvs.2008.12.026.
    1. Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol. 2008;3:358–364. doi: 10.1097/JTO.0b013e318168d9ed.
    1. Qi LP, Zhang XP, Tang L, Li J, Sun YS, Zhu GY. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study. Eur Radiol. 2009;19:333–341. doi: 10.1007/s00330-008-1134-3.
    1. Akata S, Kajiwara N, Park J, Yoshimura M, Kakizaki D, Abe K, Hirano T, Ohira T, Tsuboi M, Kato H. Evaluation of chest wall invasion by lung cancer using respiratory dynamic MRI. J Med Imaging Radiat Oncol. 2008;52:36–39. doi: 10.1111/j.1440-1673.2007.01908.x.
    1. Ohno Y, Koyama H, Takenaka D, Nogami M, Maniwa Y, Nishimura Y, Ohbayashi C, Sugimura K. Dynamic MRI, dynamic multidetector-row computed tomography (MDCT), and coregistered 2-[fluorine-18]-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET)/CT: comparative study of capability for management of pulmonary nodules. J Magn Reson Imaging. 2008;27:1284–1295. doi: 10.1002/jmri.21348.
    1. Pauls S, Mottaghy FM, Schmidt SA, Krüger S, Möller P, Brambs H-J, Wunderlich A. Evaluation of lung tumor perfusion by dynamic contrast-enhanced MRI. Magn Reson Imaging. 2008;26:1334–1341. doi: 10.1016/j.mri.2008.04.005.
    1. Hebestreit A, Schultz G, Trusen A, Hebestreit H. Follow-up of acute pulmonary complications in cystic fibrosis by magnetic resonance imaging: a pilot study. Acta Paediatr. 2004;93:414–416. doi: 10.1111/j.1651-2227.2004.tb02972.x.
    1. Cohen MD, Eigen H, Scott PH, Tepper R, Cory DA, Smith JA, Scales RL. Magnetic resonance imaging of inflammatory lung disorders: preliminary studies in children. Pediatr Pulmonol. 1986;2:211–217. doi: 10.1002/ppul.1950020408.
    1. Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ. MR imaging of lung parenchyma at 0.2T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol. 2004;14:703–708. doi: 10.1007/s00330-003-2215-y.
    1. Wagner M, Böwing B, Kuth R, Deimling M, Rascher W, Rupprecht T. Low field thoracic MRI–a fast and radiation free routine imaging modality in children. Magn Reson Imaging. 2001;19:975–983. doi: 10.1016/S0730-725X(01)00417-9.
    1. Peltola V, Ruuskanen O, Svedström E. Magnetic resonance imaging of lung infections in children. Pediatr Radiol. 2008;38:1225–1231. doi: 10.1007/s00247-008-0987-6.
    1. Hirsch W, Sorge I, Krohmer S, Weber D, Meier K, Till H. MRI of the lungs in children. Eur J Radiol. 2008;68:278–288. doi: 10.1016/j.ejrad.2008.05.017.
    1. Yi CA, Lee KS, Han J, Chung MP, Chung MJ, Shin KM. 3-T MRI for differentiating inflammation- and fibrosis-predominant lesions of usual and nonspecific interstitial pneumonia: comparison study with pathologic correlation. AJR Am J Roentgenol. 2008;190:878–885. doi: 10.2214/AJR.07.2833.
    1. Montella S, Santamaria F, Salvatore M, Pignata C, Maglione M, Iacotucci P, Mollica C. Assessment of chest high-field magnetic resonance imaging in children and young adults with noncystic fibrosis chronic lung disease: comparison to high-resolution computed tomography and correlation with pulmonary function. Invest Radiol. 2009;44:532–538. doi: 10.1097/RLI.0b013e3181b4c1ba.
    1. Mannino DM, Doherty DE, Sonia Buist A. Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respir Med. 2006;100:115–122. doi: 10.1016/j.rmed.2005.03.035.
    1. Bankier AA, O’Donnell CR, Mai VM, Storey P, Maertelaer V, Edelman RR, Chen Q. Impact of lung volume on MR signal intensity changes of the lung parenchyma. J Magn Reson Imaging. 2004;20:961–966. doi: 10.1002/jmri.20198.
    1. Ley-Zaporozhan J, Ley S, Kauczor H-U. Morphological and functional imaging in COPD with CT and MRI: present and future. Eur Radiol. 2008;18:510–521. doi: 10.1007/s00330-007-0772-1.
    1. Decramer M, Gosselink R, Troosters T, Verschueren M, Evers G. Muscle weakness is related to utilization of health care resources in COPD patients. Eur Respir J. 1997;10:417–423. doi: 10.1183/09031936.97.10020417.
    1. Henderson AC, Ingenito EP, Salcedo ES, Moy ML, Reilly JJ, Lutchen KR. Dynamic lung mechanics in late-stage emphysema before and after lung volume reduction surgery. Respir Physiol Neurobiol. 2007;155:234–242. doi: 10.1016/j.resp.2006.05.009.
    1. Suga K, Tsukuda T, Awaya H, Takano K, Koike S, Matsunaga N, Sugi K, Esato K. Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging. 1999;10:510–520. doi: 10.1002/(SICI)1522-2586(199910)10:4<510::AID-JMRI3>;2-G.
    1. Iwasawa T, Yoshiike Y, Saito K, Kagei S, Gotoh T, Matsubara S. Paradoxical motion of the hemidiaphragm in patients with emphysema. J Thorac Imaging. 2000;15:191–195. doi: 10.1097/00005382-200007000-00007.
    1. Iwasawa T, Kagei S, Gotoh T, Yoshiike Y, Matsushita K, Kurihara H, Saito K, Matsubara S. Magnetic resonance analysis of abnormal diaphragmatic motion in patients with emphysema. Eur Respir J. 2002;19:225–231. doi: 10.1183/09031936.02.00044602.
    1. Iwasawa T, Takahashi H, Ogura T, Asakura A, Gotoh T, Kagei S, J-ichi N, Obara M, Inoue T. Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J Magn Reson Imaging. 2007;26:1530–1536. doi: 10.1002/jmri.21183.
    1. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare DP. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi: 10.1056/NEJMoa032158.
    1. Heussel CP, Ley S, Biedermann A, Rist A, Gast KK, Schreiber WG, Kauczor H-U. Respiratory lumenal change of the pharynx and trachea in normal subjects and COPD patients: assessment by cine-MRI. Eur Radiol. 2004;14:2188–2197. doi: 10.1007/s00330-004-2461-7.
    1. Euler US, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand. 1946;12:301–320. doi: 10.1111/j.1748-1716.1946.tb00389.x.
    1. Theissen IL, Meissner A. Hypoxic pulmonary vasoconstriction. Anaesthesist. 1996;45:643–652. doi: 10.1007/s001010050298.
    1. Morrison NJ, Abboud RT, Müller NL, Miller RR, Gibson NN, Nelems B, Evans KG. Pulmonary capillary blood volume in emphysema. Am Rev Respir Dis. 1990;141:53–61.
    1. Cederlund K, Högberg S, Jorfeldt L, Larsen F, Norman M, Rasmussen E, Tylén U. Lung perfusion scintigraphy prior to lung volume reduction surgery. Acta Radiol. 2003;44:246–251.
    1. Sandek K, Bratel T, Lagerstrand L, Rosell H. Relationship between lung function, ventilation-perfusion inequality and extent of emphysema as assessed by high-resolution computed tomography. Respir Med. 2002;96:934–943. doi: 10.1053/rmed.2002.1371.
    1. Ley-Zaporozhan J, Ley S, Eberhardt R, Weinheimer O, Fink C, Puderbach M, Eichinger M, Herth F, Kauczor H-U. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema. Eur J Radiol. 2007;63:76–83. doi: 10.1016/j.ejrad.2007.01.020.
    1. Sergiacomi G, Sodani G, Fabiano S, Manenti G, Spinelli A, Konda D, Roma M, Schillaci O, Simonetti G. MRI lung perfusion 2D dynamic breath-hold technique in patients with severe emphysema. In Vivo. 2003;17:319–324.
    1. Fink C, Puderbach M, Bock M, Lodemann K-P, Zuna I, Schmähl A, Delorme S, Kauczor H-U. Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology. 2004;231:175–184. doi: 10.1148/radiol.2311030193.
    1. Ohno Y, Koyama H, Nogami M, Takenaka D, Matsumoto S, Yoshimura M, Kotani Y, Sugimura K. Postoperative lung function in lung cancer patients: comparative analysis of predictive capability of MRI, CT, and SPECT. AJR Am J Roentgenol. 2007;189:400–408. doi: 10.2214/AJR.07.2084.
    1. Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor H-U. Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest Radiol. 2006;41:624–630. doi: 10.1097/01.rli.0000225399.65609.45.
    1. Amundsen T, Torheim G, Kvistad KA, Waage A, Bjermer L, Nordlid KK, Johnsen H, Asberg A, Haraldseth O. Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation-perfusion scintigraphy: an intra-modality and inter-modality agreement study. J Magn Reson Imaging. 2002;15:386–394. doi: 10.1002/jmri.10092.
    1. Alford SK, Beek EJR, McLennan G, Hoffman EA. Heterogeneity of pulmonary perfusion as a mechanistic image-based phenotype in emphysema susceptible smokers. Proc Natl Acad Sci USA. 2010;107:7485–7490. doi: 10.1073/pnas.0913880107.
    1. Ohno Y, Higashino T, Takenaka D, Sugimoto K, Yoshikawa T, Kawai H, Fujii M, Hatabu H, Sugimura K. MR angiography with sensitivity encoding (SENSE) for suspected pulmonary embolism: comparison with MDCT and ventilation-perfusion scintigraphy. AJR Am J Roentgenol. 2004;183:91–98.
    1. Ohno Y, Hatabu H, Murase K, Higashino T, Kawamitsu H, Watanabe H, Takenaka D, Fujii M, Sugimura K. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging. 2004;20:353–365. doi: 10.1002/jmri.20137.
    1. Müller NL, Mayo JR, Zwirewich CV. Value of MR imaging in the evaluation of chronic infiltrative lung diseases: comparison with CT. AJR Am J Roentgenol. 1992;158:1205–1209.
    1. Rieger C, Herzog P, Eibel R, Fiegl M, Ostermann H. Pulmonary MRI–a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer. 2008;16:599–606. doi: 10.1007/s00520-007-0346-4.
    1. Lutterbey G, Gieseke J, Falkenhausen M, Morakkabati N, Schild H. Lung MRI at 3.0T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol. 2005;15:324–328. doi: 10.1007/s00330-004-2548-1.
    1. Lutterbey G, Grohé C, Gieseke J, Falkenhausen M, Morakkabati N, Wattjes MP, Manka R, Trog D, Schild HH. Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol. 2007;61:256–261. doi: 10.1016/j.ejrad.2006.09.005.
    1. McFadden RG, Carr TJ, Wood TE. Proton magnetic resonance imaging to stage activity of interstitial lung disease. Chest. 1987;92:31–39. doi: 10.1378/chest.92.1.31.
    1. Berthezène Y, Vexler V, Kuwatsuru R, Rosenau W, Mühler A, Clément O, Price DC, Brasch RC. Differentiation of alveolitis and pulmonary fibrosis with a macromolecular MR imaging contrast agent. Radiology. 1992;185:97–103.
    1. Gaeta M, Blandino A, Scribano E, Minutoli F, Barone M, Andò F, Pandolfo I. Chronic infiltrative lung diseases: value of gadolinium-enhanced MRI in the evaluation of disease activity–early report. Chest. 2000;117:1173–1178. doi: 10.1378/chest.117.4.1173.
    1. Jacob RE, Amidan BG, Soelberg J, Minard KR. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J Magn Reson Imaging. 2010;31:1091–1099. doi: 10.1002/jmri.22166.
    1. Weick S, Oechsner M, Blaimer M, Breuer H, Köstler H, Hahn D (2009) Self -gated 3D FLASH imaging of the human lung under free breathing using DC signals. Proceedings 17th Scientific Meeting, ISMRM
    1. Song HK, Dougherty L. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med. 2000;44:825–832. doi: 10.1002/1522-2594(200012)44:6<825::AID-MRM2>;2-D.
    1. Song HK, Dougherty L. Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med. 2004;52:815–824. doi: 10.1002/mrm.20237.
    1. Lin W, Guo J, Rosen MA, Song HK. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med. 2008;60:1135–1146. doi: 10.1002/mrm.21740.
    1. Bauman G, Puderbach M, Deimling M, Jellus V, Chefd’hotel C, Dinkel J, Hintze C, Kauczor H-U, Schad LR. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med. 2009;62:656–664. doi: 10.1002/mrm.22031.
    1. Chefd’hotel C, Hermosillo G, Faugeras O (2002) Flows of Diffeomorphisms for Multimodal Image Registration. Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI’2002), Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers:753–756
    1. Suga K, Ogasawara N, Okada M, Tsukuda T, Matsunaga N, Miyazaki M. Lung perfusion impairments in pulmonary embolic and airway obstruction with noncontrast MR imaging. J Appl Physiol. 2002;92:2439–2451.
    1. Bauman G, Lützen U, Ullrich M, Gaass T, Dinkel J, Elke G, Meybohm P, Frerichs I, Hoffmann B, Borggrefe J, Knuth HC, Schupp J, Prüm H, Eichinger M, Pudebach M, Biederer J, Hintze C. Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology. 2011;260:551–559. doi: 10.1148/radiol.11102313.
    1. Pichler BJ, Judenhofer M, Pfannenberg C (2008) Multimodal imaging approaches: PET/CT and PET/MRI. In: Handb Exp Pharmacol:109–132
    1. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–1970. doi: 10.1088/0031-9155/42/10/010.
    1. Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–336. doi: 10.2967/jnumed.109.061853.
    1. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–3106. doi: 10.1088/0031-9155/56/10/013.
    1. Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. Eur Radiol. 2008;18:1077–1086. doi: 10.1007/s00330-008-0857-5.
    1. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S56–S68. doi: 10.1007/s00259-009-1078-0.
    1. Ratib O, Beyer T. Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging. 2011;38:992–995. doi: 10.1007/s00259-011-1790-4.
    1. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S113–S120. doi: 10.1007/s00259-008-0951-6.
    1. Antoch G, Vogt FM, Freudenberg LS, Nazaradeh F, Goehde SC, Barkhausen J, Dahmen G, Bockisch A, Debatin JF, Ruehm SG. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA. 2003;290:3199–3206. doi: 10.1001/jama.290.24.3199.

Source: PubMed

3
Abonner