Effects of a liquefied petroleum gas stove intervention on pollutant exposure and adult cardiopulmonary outcomes (CHAP): study protocol for a randomized controlled trial

Magdalena Fandiño-Del-Rio, Dina Goodman, Josiah L Kephart, Catherine H Miele, Kendra N Williams, Mitra Moazzami, Elizabeth C Fung, Kirsten Koehler, Victor G Davila-Roman, Kathryn A Lee, Saachi Nangia, Steven A Harvey, Kyle Steenland, Gustavo F Gonzales, William Checkley, Cardiopulmonary outcomes and Household Air Pollution trial (CHAP) Trial Investigators, Magdalena Fandiño-Del-Rio, Dina Goodman, Josiah L Kephart, Catherine H Miele, Kendra N Williams, Mitra Moazzami, Elizabeth C Fung, Kirsten Koehler, Victor G Davila-Roman, Kathryn A Lee, Saachi Nangia, Steven A Harvey, Kyle Steenland, Gustavo F Gonzales, William Checkley, Cardiopulmonary outcomes and Household Air Pollution trial (CHAP) Trial Investigators

Abstract

Background: Biomass fuel smoke is a leading risk factor for the burden of disease worldwide. International campaigns are promoting the widespread adoption of liquefied petroleum gas (LPG) in resource-limited settings. However, it is unclear if the introduction and use of LPG stoves, in settings where biomass fuels are used daily, reduces pollution concentration exposure, improves health outcomes, or how cultural and social barriers influence the exclusive adoption of LPG stoves.

Methods: We will conduct a randomized controlled, field intervention trial of LPG stoves and fuel distribution in rural Puno, Peru, in which we will enroll 180 female participants aged 25-64 years and follow them for 2 years. After enrollment, we will collect information on sociodemographic characteristics, household characteristics, and cooking practices. During the first year of the study, LPG stoves and fuel tanks will be delivered to the homes of 90 intervention participants. During the second year, participants in the intervention arm will keep their LPG stoves, but the gas supply will stop. Control participants will receive LPG stoves and vouchers to obtain free fuel from distributors at the beginning of the second year, but gas will not be delivered. Starting at baseline, we will collect longitudinal measurements of respiratory symptoms, pulmonary function, blood pressure, endothelial function, carotid artery intima-media thickness, 24-h dietary recalls, exhaled carbon monoxide, quality-of-life indicators, and stove-use behaviors. Environmental exposure assessments will occur six times over the 2-year follow-up period, consisting of 48-h personal exposure and kitchen concentration measurements of fine particulate matter and carbon monoxide, and 48-h kitchen concentrations of nitrogen dioxide for a subset of 100 participants.

Discussion: Findings from this study will allow us to better understand behavioral patterns, environmental exposures, and cardiovascular and pulmonary outcomes resulting from the adoption of LPG stoves. If this trial indicates that LPG stoves are a feasible and effective way to reduce household air pollution and improve health, it will provide important information to support widespread adoption of LPG fuel as a strategy to reduce the global burden of disease.

Trial registration: ClinicalTrials.gov, ID: NCT02994680 , Cardiopulmonary Outcomes and Household Air Pollution (CHAP) Trial. Registered on 28 November 2016.

Keywords: Behavior change; Biomass fuel; Cardiopulmonary outcomes; Cookstove; Exclusive adoption; Household air pollution; Indoor air pollution; LPG; Personal exposure.

Conflict of interest statement

Ethics approval and consent to participate

The trial received approval by Johns Hopkins School of Public Health Institutional Review Board (IRB00007128), A.B. PRISMA Ethical Institutional Committee (CE2402.16), and Universidad Peruana Cayetano Heredia Institutional Review Board (SIDISI 66780). We will be requesting verbal consent to participate from all participants at the time of enrollment. Any amendments will undergo ethical review board approval at all institutions involved.

Consent for publication

Written informed consent was obtained from the participant for publication of their individual details and accompanying images in this manuscript. The Consent Form is held by the authors and is available for review by the Editor-in-Chief.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Expected study enrollment and timeline diagram
Fig. 2
Fig. 2
Location of all households in the study population and liquefied petroleum gas fuel purchase sites
Fig. 3
Fig. 3
Barplot of nearest-neighbor distances between households in study area. Median distance to nearest house between households in the study area is 101 m with an interquartile range of 56 to 189 m
Fig. 4
Fig. 4
Three-burner liquefied petroleum gas stove that will be used for the intervention
Fig. 5
Fig. 5
Delivery system through motorcycle for liquefied petroleum gas tanks
Fig. 6
Fig. 6
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure data collection schedule for the first year of follow-up
Fig. 7
Fig. 7
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure data collection schedule for the second year of follow-up
Fig. 8
Fig. 8
Portable particulate matter and carbon monoxide sampling devices
Fig. 9
Fig. 9
Placement of devices in an apron pocket to monitor personal exposure of particulate matter of less than 2.5 μm in aerodynamic diameter (PM2.5) and carbon monoxide (CO)

References

    1. Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ. 2000;78:1078–1092.
    1. Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, et al. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu Rev Public Health. 2014;35:185–206. doi: 10.1146/annurev-publhealth-032013-182356.
    1. World Health Organization . Global Health Risks: mortality and burden of disease attributable to selected major risks. Geneva: WHO Press; 2009.
    1. World Health Organization. Burden of disease from household air pollution for 2012. 2014. . Accessed 21 Jul 2016.
    1. Dennis R, Maldonado D, Norman S, Baena E, Martinez G. Woodsmoke exposure and risk for obstructive airways disease among women. Chest. 1996;109:115–119. doi: 10.1378/chest.109.1.115.
    1. Menezes AM, Victora CG, Rigatto M. Prevalence and risk factors for chronic bronchitis in Pelotas, RS, Brazil: a population-based study. Thorax. 1994;49:1217–1221. doi: 10.1136/thx.49.12.1217.
    1. Orozco-Levi M, Garcia-Aymerich J, Villar J, Ramírez-Sarmiento A, Antó JM, Gea J. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur Respir J. 2006;27:542–546. doi: 10.1183/09031936.06.00052705.
    1. Shrestha IL, Shrestha SL. Indoor air pollution from biomass fuels and respiratory health of the exposed population in Nepalese households. Int J Occup Environ Health. 2005;11:150–160. doi: 10.1179/oeh.2005.11.2.150.
    1. Rinne ST, Rodas EJ, Bender BS, Rinne ML, Simpson JM, Galer-Unti R, et al. Relationship of pulmonary function among women and children to indoor air pollution from biomass use in rural Ecuador. Respir Med. 2006;100:1208–1215. doi: 10.1016/j.rmed.2005.10.020.
    1. Ramírez-Venegas A, Sansores RH, Pérez-Padilla R, Regalado J, Velázquez A, Sánchez C, et al. Survival of patients with chronic obstructive pulmonary disease due to biomass smoke and tobacco. Am J Respir Crit Care Med. 2006;173:393–397. doi: 10.1164/rccm.200504-568OC.
    1. Akhtar T, Ullah Z, Khan MH, Nazli R. Chronic bronchitis in women using solid biomass fuel in rural Peshawar, Pakistan. Chest. 2007;132:1472–1475. doi: 10.1378/chest.06-2529.
    1. Liu S, Zhou Y, Wang X, Wang D, Lu J, Zheng J, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax. 2007;62:889–897. doi: 10.1136/thx.2006.061457.
    1. Pérez-Padilla R, Regalado J, Vedal S, Paré P, Chapela R, Sansores R, et al. Exposure to biomass smoke and chronic airway disease in Mexican women. A case-control study. Am J Respir Crit Care Med. 1996;154(3 Pt 1):701–706. doi: 10.1164/ajrccm.154.3.8810608.
    1. Liu Q, Sasco AJ, Riboli E, Hu MX. Indoor air pollution and lung cancer in Guangzhou, People’s Republic of China. Am J Epidemiol. 1993;137:145–154. doi: 10.1093/oxfordjournals.aje.a116654.
    1. Ko YC, Lee CH, Chen MJ, Huang CC, Chang WY, Lin HJ, et al. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol. 1997;26:24–31. doi: 10.1093/ije/26.1.24.
    1. Smith K, McCracken J, Weber M, Hubbard A, Jenny A, Thompson L, et al. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. Lancet. 2011;378:1717–1726. doi: 10.1016/S0140-6736(11)60921-5.
    1. Bautista LE, Correa A, Baumgartner J, Breysse P, Matanoski GM. Indoor charcoal smoke and acute respiratory infections in young children in the Dominican Republic. Am J Epidemiol. 2009;169:572–580. doi: 10.1093/aje/kwn372.
    1. Mishra V. Indoor air pollution from biomass combustion and acute respiratory illness in preschool age children in Zimbabwe. Int J Epidemiol. 2003;32:847–853. doi: 10.1093/ije/dyg240.
    1. Fullerton D, Bruce N, Gordon S. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R Soc Trop Med Hyg. 2008;102:843–851. doi: 10.1016/j.trstmh.2008.05.028.
    1. Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447–458. doi: 10.1056/NEJMoa054409.
    1. Boy E, Bruce N, Delgado H. Birth weight and exposure to kitchen wood smoke during pregnancy in rural Guatemala. Environ Health Perspect. 2002;110:109–114. doi: 10.1289/ehp.02110109.
    1. Yucra S, Tapia V, Steenland K, Naeher LP, Gonzales GF. Association between biofuel exposure and adverse birth outcomes at high altitudes in Peru: a matched case-control study. Int J Occup Environ Health. 2011;17:307–313. doi: 10.1179/oeh.2011.17.4.307.
    1. World Health Organization . Burning opportunity: clean household energy for health, sustainable development, and wellbeing of women and children. Geneva: WHO Press; 2016.
    1. Mendis S, Armstrong T, Bettcher D, Branca F, Lauer J, Mace C, et al. The WHO Global Status Report on Noncommunicable Diseases 2014. 2014. . Accessed 26 Jul 2016.
    1. Institute of Medicine (US) Committee on Preventing the Global Epidemic of Cardiovascular Disease: Meeting the Challenges in Developing Countries. Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. Washington (DC): National Academies Press (US); 2010. . Accessed 29 Aug 2016.
    1. NH UnitedHealth Global response to non-communicable disease. BMJ. 2011;342:d3823. doi: 10.1136/bmj.d3823.
    1. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Luepker R, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation. 2004;109:2655–2671. doi: 10.1161/01.CIR.0000128587.30041.C8.
    1. Pope CA, Burnett RT, Thurston GD, Thun MJ, Callee EE, Krewski D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109:71–77. doi: 10.1161/01.CIR.0000108927.80044.7F.
    1. Pope C, Burnett R, Krewski D, Jerrett M, Shi Y, Calle E, et al. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure-response relationship. Circulation. 2009;120:941–948. doi: 10.1161/CIRCULATIONAHA.109.857888.
    1. Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002;105:1534–1536. doi: 10.1161/01.CIR.0000013838.94747.64.
    1. O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA, et al. Diabetes enhances vulnerability to particulate air pollution–associated impairment in vascular reactivity and endothelial function. Circulation. 2005;111:2913–2920. doi: 10.1161/CIRCULATIONAHA.104.517110.
    1. Rundell K, Hoffman J, Caviston R, Bulbulian R, Hollenbach A. Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol. 2007;19:133–140. doi: 10.1080/08958370601051727.
    1. Painschab MS, Davila-Roman VG, Gilman RH, Vasquez-Villar AD, Pollard SL, Wise RA, et al. Chronic exposure to biomass fuel is associated with increased carotid artery intima-media thickness and a higher prevalence of atherosclerotic plaque. Heart. 2013;99:984–991. doi: 10.1136/heartjnl-2012-303440.
    1. Brook RD, Rajagopalan S, Pope C, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121:2331–2378. doi: 10.1161/CIR.0b013e3181dbece1.
    1. Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122:397–403.
    1. McCracken JP, Smith KR, Díaz A, Mittleman MA, Schwartz J. Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environ Health Perspect. 2007;115:996–1001. doi: 10.1289/ehp.9888.
    1. Baumgartner J, Schauer JJ, Ezzati M, Lu L, Cheng C, Patz JA, et al. Indoor air pollution and blood pressure in adult women living in rural China. Environ Health Perspect. 2011;119:1390–1395. doi: 10.1289/ehp.1003371.
    1. Baumgartner J, Zhang Y, Schauer JJ, Ezzati M, Patz JA, Bautista LE. Household air pollution and children’s blood pressure. Epidemiology. 2012;23:641–642. doi: 10.1097/EDE.0b013e3182593fa9.
    1. Baumgartner J, Zhang Y, Schauer JJ, Huang W, Wang Y, Ezzati M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc Natl Acad Sci U S A. 2014;111:13229–13234. doi: 10.1073/pnas.1317176111.
    1. Wilker EH, Ljungman PL, Rice MB, Kloog I, Schwartz J, Gold DR, et al. Relation of long-term exposure to air pollution to brachial artery flow-mediated dilation and reactive hyperemia. Am J Cardiol. 2014;113:2057–63.
    1. Briet M, Collin C, Laurent S, Tan A, Azizi M, Agharazii M, et al. Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension. 2007;50:970–6.
    1. Menezes AM, Perez-Padilla R, Jardim JB, Muiño A, Lopez MV, Valdivia G, et al. Chronic obstructive pulmonary disease in five Latin American cities (the PLATINO study): a prevalence study. Lancet. 2005;366:1875–1881. doi: 10.1016/S0140-6736(05)67632-5.
    1. Buist AS, McBurnie MA, Vollmer WM, Gillespie S, Burney P, Mannino DM, et al. International variation in the prevalence of COPD (The BOLD Study): a population-based prevalence study. Lancet. 2007;370:741–750. doi: 10.1016/S0140-6736(07)61377-4.
    1. Smith-Silverstein T, Diaz E, Pope D, Lie RT, Diaz A, McCracken J, et al. Effect of reducing indoor air pollution on women’s respiratory symptoms and lung function: the RESPIRE randomized trial, Guatemala. Am J Epidemiol. 2009;170:211–220. doi: 10.1093/aje/kwp100.
    1. Mannino DM, Braman S. The epidemiology and economics of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2007;4:502–506. doi: 10.1513/pats.200701-001FM.
    1. Kurmi OP, Semple S, Simkhada P, Smith WCS, Ayres JG. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax. 2010;65:221–228. doi: 10.1136/thx.2009.124644.
    1. Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Lam KH, et al. Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med. 2014;2:823–860. doi: 10.1016/S2213-2600(14)70168-7.
    1. Jaganath D, Miranda JJ, Gilman RH, Wise RA, Diette GB, Miele CH, et al. Prevalence of chronic obstructive pulmonary disease and variation in risk factors across four geographically diverse resource-limited settings in Peru. Respir Res. 2015;16:40. doi: 10.1186/s12931-015-0198-2.
    1. Miele C, Jaganath D, Miranda J, Bernabé-Ortiz A, Gilman R, Johnson C, et al. Urbanization and daily exposure to biomass fuel smoke both contribute to chronic bronchitis risk in a population with low prevalence of daily tobacco smoking. COPD J Chron Obstruct Pulmon Dis. 2015;13:1–10.
    1. Romieu I, Riojas-Rodríguez H, Marrón-Mares A, Schilmann A, Perez-Padilla R, Masera O. Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am J Respir Crit Care Med. 2009;180:649–656. doi: 10.1164/rccm.200810-1556OC.
    1. Ezzati M, Kammen DM. Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries. Environ Health Perspect. 2001;109:481–488. doi: 10.1289/ehp.01109481.
    1. Thomas E, Wickramasinghe K, Mendis S, Roberts N, Foster C. Improved stove interventions to reduce household air pollution in low and middle income countries: a descriptive systematic review. BMC Public Health. 2015;15:650. doi: 10.1186/s12889-015-2024-7.
    1. Albalak R, Bruce N, McCracken JP, Smith KR, De Gallardo T. Indoor respirable particulate matter concentrations from an open fire, improved cookstove, and LPG/open fire combination in a rural Guatemalan community. Environ Sci Technol. 2001;35:2650–2655. doi: 10.1021/es001940m.
    1. Naeher LP, Leaderer BP, Smith KR. Particulate matter and carbon monoxide in highland Guatemala: indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor Air. 2000;10:200–205. doi: 10.1034/j.1600-0668.2000.010003200.x.
    1. Jary HR, Kachidiku J, Banda H, Kapanga M, Doyle JV, Banda E, et al. Feasibility of conducting a randomised controlled trial of a cookstove intervention in rural Malawi. Int J Tuberc Lung Dis. 18:240–7.
    1. World Bank. Household cookstoves, environment, health, and climate change: a new look at an old problem. 2011. .
    1. Balmes J, Pope D, Dherani M, Zhang J, Duan X, Bates M, et al. WHO guidelines for indoor air quality: household fuel combustion. Review 4: Health effects of household air pollution (HAP) exposure. 2014. . Accessed 20 Jul 2016.
    1. Mortimer K, Ndamala CB, Naunje AW, Malava J, Katundu C, Weston W, et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. Lancet. 2016. doi: 10.1016/S0140-6736(16)32507-7.
    1. Nie P, Sousa-Poza A, Xue J. Fuel for life: domestic cooking fuels and women’s health in rural China. Int J Environ Res Public Health. 2016;13:810. doi: 10.3390/ijerph13080810.
    1. Anderman TL, DeFries RS, Wood SA, Remans R, Ahuja R, Ulla SE. Biogas cook stoves for healthy and sustainable diets? A case study in Southern India. Nutr Environ Sustain. 2015;28.
    1. Begum BA, Paul SK, Dildar Hossain M, Biswas SK, Hopke PK. Indoor air pollution from particulate matter emissions in different households in rural areas of Bangladesh. Build Environ. 2009;44:898–903. doi: 10.1016/j.buildenv.2008.06.005.
    1. Sukhsohale ND, Narlawar UW, Phatak MS, Agrawal SB, Ughade SN. Effect of indoor air pollution during cooking on peak expiratory flow rate and its association with exposure index in rural women. Indian J Physiol Pharmacol. 2013;57:184–188.
    1. Pokhrel AK, Smith KR, Khalakdina A, Deuja A, Bates MN. Case-control study of indoor cooking smoke exposure and cataract in Nepal and India. Int J Epidemiol. 2005;34:702–708. doi: 10.1093/ije/dyi015.
    1. Shen G, Chen Y, Du W, Lin N, Wang X, Cheng H, et al. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels. Environ Pollut. doi: 10.1016/j.envpol.2016.07.002.
    1. Adetona O, Li Z, Sjödin A, Romanoff LC, Aguilar-Villalobos M, Needham LL, et al. Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru—Comparison of different fuel types used for cooking. Environ Int. 2013;53:1–8. doi: 10.1016/j.envint.2012.11.010.
    1. Titcombe ME, Simcik M. Personal and indoor exposure to PM2.5 and polycyclic aromatic hydrocarbons in the southern highlands of Tanzania: a pilot-scale study. Environ Monit Assess. 2011;180:461–476. doi: 10.1007/s10661-010-1799-3.
    1. Regalado J, Perez-Padilla R, Sansores R, Páramo Ramirez J, Brauer M, Paré P, et al. The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am J Respir Crit Care Med. 2006;174:901–905. doi: 10.1164/rccm.200503-479OC.
    1. Johnson MA, Chiang RA. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ Health Perspect. 2015. doi: 10.1289/ehp.1408681.
    1. Puzzolo E, Pope D, Stanistreet D, Rehfuess EA, Bruce NG. Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use. Environ Res. 2016;146:218–234. doi: 10.1016/j.envres.2016.01.002.
    1. Alexander D, Linnes JC, Bolton S, Larson T. Ventilated cookstoves associated with improvements in respiratory health-related quality of life in rural Bolivia. J Public Health. 2014;36:460–466. doi: 10.1093/pubmed/fdt086.
    1. Instituto Nacional de Estadistica e Informatica de Peru. Censos Nacionales 2007: XI de Población y VI de Vivienda–Cuadros Estadísticos. Instituto Nacional de Estadistica e Informatica de Peru. 2007. . Accessed 23 Aug 2016.
    1. Pollard SL, Williams DL, Breysse PN, Baron PA, Grajeda LM, Gilman RH, et al. A cross-sectional study of determinants of indoor environmental exposures in households with and without chronic exposure to biomass fuel smoke. Environ Health. 2014;13:21. doi: 10.1186/1476-069X-13-21.
    1. Meinert, CL, Tonascia, S. Clinical trials: design, conduct, and analysis, 1st ed. New York: Oxford University Press; 1986.
    1. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016. . Accessed 18 Nov 2016.
    1. Burroughs Peña M, Romero KM, Velazquez EJ, Davila-Roman VG, Gilman RH, Wise RA, et al. Relationship between daily exposure to biomass fuel smoke and blood pressure in high-altitude Peru. Hypertension. 2015;65:1134–1140. doi: 10.1161/HYPERTENSIONAHA.114.04840.
    1. Camp PG, Ramirez-Venegas A, Sansores RH, Alva LF, McDougall JE, Sin DD, et al. COPD phenotypes in biomass smoke- versus tobacco smoke-exposed Mexican women. Eur Respir J. 2014;43:725–734. doi: 10.1183/09031936.00206112.
    1. McCracken JP, Wellenius GA, Bloomfield GS, Brook RD, Tolunay HE, Dockery DW, et al. Household air pollution from solid fuel use: evidence for links to CVD. Glob Heart. 2012;7:223–234. doi: 10.1016/j.gheart.2012.06.010.
    1. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation: The St. George’s Respiratory Questionnaire. Am Rev Respir Dis. 1992;145:1321–1327. doi: 10.1164/ajrccm/145.6.1321.
    1. Jones PW. St. George’s Respiratory Questionnaire: MCID. COPD: J Chron Obstruct Pulmon Dis. 2005;2:75–79. doi: 10.1081/COPD-200050513.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Ferguson GT, Enright PL, Buist AS, Higgins MW. Office spirometry for lung health assessment in adults: a consensus statement from the National Lung Health Education Program. Chest. 2000;117:1146–1161. doi: 10.1378/chest.117.4.1146.
    1. Cobble M, Bale B. Carotid intima-media thickness: knowledge and application to everyday practice. Postgrad Med. 2010;122:10–18. doi: 10.3810/pgm.2010.01.2091.
    1. Lorenz MW, Von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS) Stroke. 2005;37:87–92. doi: 10.1161/01.STR.0000196964.24024.ea.
    1. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation. 1997;96:1432–1437. doi: 10.1161/01.CIR.96.5.1432.
    1. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 21;93–111.
    1. Sharma K, Blaha MJ, Blumenthal RS, Musunuru K. Clinical and research applications of carotid intima-media thickness. Am J Cardiol. 2009;103:1316–1320. doi: 10.1016/j.amjcard.2009.01.020.
    1. The National Heart, Lung, and Blood Institute. Atherosclerosis Risk in Communities Study Protocol Manual 6A: Ultrasound Assessment: Scanning Procedures. 1997. .
    1. Schäberle W. Ultrasonography in vascular diagnosis: a therapy-oriented textbook and atlas. Springer Berlin Heidelberg; 2005.
    1. Mattace-Raso FUS, van der Cammen TJM, Hofman A, van Popele NM, Bos ML, Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation. 2006;113:657–663. doi: 10.1161/CIRCULATIONAHA.105.555235.
    1. Hamburg NM, Palmisano J, Larson MG, Sullivan LM, Lehman BT, Vasan RS, et al. Relation of brachial and digital measures of vascular function in the community: The Framingham Heart Study. Hypertension. 2011;57:390–396. doi: 10.1161/HYPERTENSIONAHA.110.160812.
    1. Bruno RM, Gori T, Ghiadoni L. Endothelial function testing and cardiovascular disease: focus on peripheral arterial tonometry. Vasc Health Risk Manag. 2014;10:577–584.
    1. Gokce N, Keaney JF, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41:1769–1775. doi: 10.1016/S0735-1097(03)00333-4.
    1. Muiesan ML, Salvetti M, Paini A, Monteduro C, Galbassini G, Poisa P, et al. Prognostic role of flow-mediated dilatation of the brachial artery in hypertensive patients. J Hypertens. 2008;26:1612–1618. doi: 10.1097/HJH.0b013e328304b083.
    1. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol. 2013;168:344–351. doi: 10.1016/j.ijcard.2012.09.047.
    1. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–265. doi: 10.1016/S0735-1097(01)01746-6.
    1. Prisma ONG. Salud y Saneamiento. Prisma. . Accessed 17 Aug 2016.
    1. 36-Item Short Form Survey from the RAND Medical Outcomes Study. . Accessed 26 Sep 2017.
    1. EQ-5D instruments – EQ-5D. . Accessed 26 Sep 2017.
    1. Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–1360. doi: 10.1056/NEJMsr1203730.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Dominguez Curi CH, Aviles Arias DA, Satalaya Perez A. Tablas auxialiares para la formulacion y evaluacion de regimenes alimentarios. 2014. . Accessed 17 Aug 2016.
    1. Dominguez Curi CH, Aviles Arias DA, Satalaya Perez A. Tabla de factores de conversion de peso de alimentos cocidos a crudos. 2014. . Accessed 17 Aug 2016.
    1. Consort–Welcome to the CONSORT website. . Accessed 2 Aug 2017.
    1. About BioLINCC. . Accessed 3 Aug 2017.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 Statement: Defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. WHO | WHO data set. . Accessed 10 Aug 2017.

Source: PubMed

3
Abonner