The Effect of a Ketogenic Low-Carbohydrate, High-Fat Diet on Aerobic Capacity and Exercise Performance in Endurance Athletes: A Systematic Review and Meta-Analysis

Jingguo Cao, Siman Lei, Xiuqiang Wang, Sulin Cheng, Jingguo Cao, Siman Lei, Xiuqiang Wang, Sulin Cheng

Abstract

A low-carbohydrate, high-fat (LCHF) diet has been proposed to enhance the fat utilization of muscle and the aerobic capacity of endurance athletes, thereby improving their exercise performance. However, it remains uncertain how the macronutrient intake shift from carbohydrate to fat affects endurance exercise training and performance. This study performed a systematic review and meta-analysis to explore the effects of a ketogenic low-carbohydrate, high-fat (K-LCHF) diet on aerobic capacity and exercise performance among endurance athletes. Searches were carried out in five electronic databases, and we followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The search included studies using an LCHF diet as an intervention protocol and compared data on factors such as maximum oxygen uptake (VO2max) and rating of perceived exertion (RPE) from the graded exercise test. In this case, 10 studies met the criteria and were included in the meta-analysis. We did not find a significant effect of K-LCHF diet interventions on VO2max, time to exhaustion, HRmax or RPE. However, a significant overall effect in the substrate oxidation response to respiratory exchange rate was observed. The meta-analysis showed that K-LCHF diets did not affect aerobic capacity and exercise performance. Therefore, high-quality interventions of a K-LCHF diet are needed to illustrate its effect on various endurance training programs.

Keywords: aerobic capacity; endurance athletes; high-fat diet; ketogenic low-carbohydrate.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Risk of bias included studies in meta-analysis.
Figure 2
Figure 2
Flowchart for studies in the meta-analysis.
Figure 3
Figure 3
Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on VO2max during graded exercise test (GXT); CI: confidence interval; SMD: standardized mean difference.
Figure 4
Figure 4
Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on total time to exhaustion (TTE) during graded exercise test (GXT); CI: confidence interval; SMD: standardized mean difference.
Figure 5
Figure 5
Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on maximal heart rate (HRmax) during graded exercise test (GXT); CI: confidence interval; SMD: standardized mean difference.
Figure 6
Figure 6
Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on respiratory exchange ratio (RER) during graded exercise test (GXT); CI: confidence interval; SMD: standardized mean difference.
Figure 7
Figure 7
Effect of the ketogenic low-carbohydrate, high-fat (K-LCHF) diet on rating of perceived exertion (RPE) during graded exercise test (GXT); CI: confidence interval; SMD: standardize mean difference.

References

    1. Paoli A., Rubini A., Volek J.S., Grimaldi K.A. Beyond weight loss: A review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 2013;67:789–796. doi: 10.1038/ejcn.2013.116.
    1. Devrim-Lanpir A., Hill L., Knechtle B. Efficacy of Popular Diets Applied by Endurance Athletes on Sports Performance: Beneficial or Detrimental? A Narrative Review. Nutrients. 2021;13:491. doi: 10.3390/nu13020491.
    1. Valsdottir T.D., Øvrebø B., Falck T.M., Litleskare S., Johansen E.I., Henriksen C., Jensen J. Low-Carbohydrate High-Fat Diet and Exercise: Effect of a 10-Week Intervention on Body Composition and CVD Risk Factors in Overweight and Obese Women—A Randomized Controlled Trial. Nutrients. 2020;13:110. doi: 10.3390/nu13010110.
    1. Phinney S., Bistrian B., Evans W., Gervino E., Blackburn G. The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32:769–776. doi: 10.1016/0026-0495(83)90106-3.
    1. Burke L.M., Kiens B. “Fat adaptation” for athletic performance: The nail in the coffin? J. Appl. Physiol. 2006;100:7–8. doi: 10.1152/japplphysiol.01238.2005.
    1. Kaspar M.B., Austin K., Huecker M., Sarav M. Ketogenic Diet: From the Historical Records to Use in Elite Athletes. Curr. Nutr. Rep. 2019;8:340–346. doi: 10.1007/s13668-019-00294-0.
    1. Starling R.D., Trappe T.A., Parcell A.C., Kerr C.G., Fink W.J., Costill D.L. Effects of diet on muscle triglyceride and endurance performance. J. Appl. Physiol. 1997;82:1185–1189. doi: 10.1152/jappl.1997.82.4.1185.
    1. Pitsiladis Y.P., Maughan R.J. The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J. Physiol. 1999;517:919–930. doi: 10.1111/j.1469-7793.1999.0919s.x.
    1. Volek J.S., Noakes T.D., Phinney S. Rethinking fat as a fuel for endurance exercise. Eur. J. Sport Sci. 2015;15:13–20. doi: 10.1080/17461391.2014.959564.
    1. Evans M., Cogan K.E., Egan B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017;595:2857–2871. doi: 10.1113/JP273185.
    1. Sumithran P., Prendergast L.A., Delbridge E., Purcell K., Shulkes A., Kriketos A.D., Proietto J. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur. J. Clin. Nutr. 2013;67:759–764. doi: 10.1038/ejcn.2013.90.
    1. Vidali S., Aminzadeh S., Lambert B., Rutherford T., Sperl W., Kofler B., Feichtinger R.G. Mitochondria: The ketogenic diet—A metabolism-based therapy. Int. J. Biochem. Cell Biol. 2015;63:55–59. doi: 10.1016/j.biocel.2015.01.022.
    1. Puchalska P., Crawford P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017;25:262–284. doi: 10.1016/j.cmet.2016.12.022.
    1. Grabacka M., Pierzchalska M., Reiss K. Peroxisome proliferator activated receptor α ligands as anticancer drugs targeting mitochondrial metabolism. Curr. Pharm. Biotechnol. 2013;14:342–356. doi: 10.2174/1389201011314030009.
    1. Draznin B., Wang C., Adochio R., Leitner J.W., Cornier M.-A. Effect of Dietary Macronutrient Composition on AMPK and SIRT1 Expression and Activity in Human Skeletal Muscle. Horm. Metab. Res. 2012;44:650–655. doi: 10.1055/s-0032-1312656.
    1. McCarty M.F., DiNicolantonio J.J., O’Keefe J.H. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Med. Hypotheses. 2015;85:631–639. doi: 10.1016/j.mehy.2015.08.002.
    1. Xu S., Tao H., Cao W., Cao L., Lin Y., Zhao S.-M., Xu W., Cao J., Zhao J.-Y. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct. Target. Ther. 2021;6:1–13. doi: 10.1038/s41392-020-00411-4.
    1. Burke L.M., Sharma A.P., Heikura I.A., Forbes S.F., Holloway M., McKay A.K.A., Bone J.L., Leckey J.J., Welvaert M., Ross M.L. Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS ONE. 2020;15:31
    1. Hawley J., Brouns F., Jeukendrup A. Strategies to Enhance Fat Utilisation During Exercise. Sports Med. 1998;25:241–257. doi: 10.2165/00007256-199825040-00003.
    1. Burke L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? Sports Med. 2015;45:33–49. doi: 10.1007/s40279-015-0393-9.
    1. Chang C.-K., Borer K., Lin P.-J. Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? J. Hum. Kinet. 2017;56:81–92. doi: 10.1515/hukin-2017-0025.
    1. Cermak N.M., van Loon L.J. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–1155. doi: 10.1007/s40279-013-0079-0.
    1. Bartlett J.D., Hawley J., Morton J.P. Carbohydrate availability and exercise training adaptation: Too much of a good thing? Eur. J. Sport Sci. 2015;15:3–12. doi: 10.1080/17461391.2014.920926.
    1. Wycherley T., Buckley J.D., Noakes M., Clifton P.M., Brinkworth G.D. Long-Term Effects of a Very Low-Carbohydrate Weight Loss Diet on Exercise Capacity and Tolerance in Overweight and Obese Adults. J. Am. Coll. Nutr. 2014;33:267–273. doi: 10.1080/07315724.2014.911668.
    1. Jeukendrup A.E., Craig N.P., Hawley J. The bioenergetics of world class cycling. J. Sci. Med. Sport. 2000;3:414–433. doi: 10.1016/S1440-2440(00)80008-0.
    1. Spriet L.L. Regulation of Substrate Use During the Marathon. Sports Med. 2007;37:332–336. doi: 10.2165/00007256-200737040-00015.
    1. Paoli A., Grimaldi K., D’Agostino D., Cenci L., Moro T., Bianco A., Palma A. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J. Int. Soc. Sports Nutr. 2012;9:34. doi: 10.1186/1550-2783-9-34.
    1. Zajac A., Poprzecki S., Maszczyk A., Czuba M., Michalczyk M., Zydek G. The Effects of a Ketogenic Diet on Exercise Metabolism and Physical Performance in Off-Road Cyclists. Nutrients. 2014;6:2493–2508. doi: 10.3390/nu6072493.
    1. Murphy N.E., Carrigan C.T., Margolis L.M. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv. Nutr. 2021;12:223–233. doi: 10.1093/advances/nmaa101.
    1. Burke L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021;599:819–843. doi: 10.1113/JP278928.
    1. Durkalec-Michalski K., Nowaczyk P.M., Główka N., Ziobrowska A., Podgórski T. Is a Four-Week Ketogenic Diet an Effective Nutritional Strategy in CrossFit-Trained Female and Male Athletes? Nutrients. 2021;13:864. doi: 10.3390/nu13030864.
    1. Masood W., Annamaraju P., Uppaluri K.R. StatPearls, StatPearls Publishing Copyright © 2021. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2021. Ketogenic Diet.
    1. Greene D.A., Varley B.J., Hartwig T., Chapman P., Rigney M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J. Strength Cond. Res. 2018;32:3373–3382. doi: 10.1519/JSC.0000000000002904.
    1. Jones A.M., Carter H. The Effect of Endurance Training on Parameters of Aerobic Fitness. Sports Med. 2000;29:373–386. doi: 10.2165/00007256-200029060-00001.
    1. Bazyler C.D., Abbott H.A., Bellon C.R., Taber C.B., Stone M.H. Strength Training for Endurance Athletes: Theory to Practice. Strength Cond. J. 2015;37:1–12. doi: 10.1519/SSC.0000000000000131.
    1. Green S., Higgins J., Alderson P. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; London, UK: 2008. Version 5.10 ed.
    1. Wan X., Wang W., Liu J., Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res. Methodol. 2014;14:1–13. doi: 10.1186/1471-2288-14-135.
    1. Tran D. Cardiopulmonary Exercise Testing. Methods Mol. Biol. 2018;1735:285–295. doi: 10.1007/978-1-4939-7614-0_18.
    1. Gross I., Hirsch H.J., Constantini N., Nice S., Pollak Y., Genstil L., Eldar-Geva T., Tsur V.G. Physical activity and maximal oxygen uptake in adults with Prader–Willi syndrome. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2017;23:615–620. doi: 10.1007/s40519-016-0356-7.
    1. Shea B.J., Grimshaw J.M., Wells G.A., Boers M., Andersson N., Hamel C., Porter A.C., Tugwell P., Moher D., Bouter L.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med Res. Methodol. 2007;7:10. doi: 10.1186/1471-2288-7-10.
    1. Burke L.M., Whitfield J., Heikura I.A., Ross M.L.R., Tee N., Forbes S.F., Hall R., McKay A.K.A., Wallett A.M., Sharma A.P. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J. Physiol. 2021;599:771–790. doi: 10.1113/JP280221.
    1. Burke L.M., Ross M.L., Garvican-Lewis L.A., Welvaert M., Heikura I.A., Forbes S.G., Mirtschin J.G., Cato L.E., Strobel N., Sharma A.P., et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017;595:2785–2807. doi: 10.1113/JP273230.
    1. Cipryan L., Plews D.J., Ferretti A., Maffetone P.B., Laursen P.B. Effects of a 4-Week Very Low-Carbohydrate Diet on High-Intensity Interval Training Responses. J. Sports Sci. Med. 2018;17:259–268.
    1. Dostal T., Plews D.J., Hofmann P., Laursen P.B., Cipryan L. Effects of a 12-Week Very-Low Carbohydrate High-Fat Diet on Maximal Aerobic Capacity, High-Intensity Intermittent Exercise, and Cardiac Autonomic Regulation: Non-randomized Parallel-Group Study. Front. Physiol. 2019;10:912. doi: 10.3389/fphys.2019.00912.
    1. Fleming J., Sharman M.J., Avery N.G., Love D.M., Gómez A.L., Scheett T.P., Kraemer W.J., Volek J.S. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int. J. Sport Nutr. Exerc. Metab. 2003;13:466–478. doi: 10.1123/ijsnem.13.4.466.
    1. Heatherly A.J., Killen L.G., Smith A.F., Waldman H.S., Seltmann C.L., Hollingsworth A., O’Neal E.K. Effects of Ad libitum Low-Carbohydrate High-Fat Dieting in Middle-Age Male Runners. Med. Sci. Sports Exerc. 2018;50:570–579. doi: 10.1249/MSS.0000000000001477.
    1. Lambert E., Speechly D.P., Dennis S.C., Noakes T.D. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Graefes Arch. Clin. Exp. Ophthalmol. 1994;69:287–293. doi: 10.1007/BF00392032.
    1. Prins P.J., Noakes T.D., Welton G.L., Haley S.J., Esbenshade N.J., Atwell A.D., Scott K.E., Abraham J., Raabe A.S., Buxton J.D., et al. High Rates of Fat Oxidation Induced by a Low-Carbohydrate, High-Fat Diet, Do Not Impair 5-km Running Performance in Competitive Recreational Athletes. J. Sports Sci. Med. 2019;18:738–750.
    1. Shaw D.M., Merien F., Braakhuis A., Maunder E., Dulson D.K. Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Med. Sci. Sports Exerc. 2019;51:2135–2146. doi: 10.1249/MSS.0000000000002008.
    1. Lambert E., Goedecke J.H., Zyle C., Murphy K., Hawley J.A., Dennis S.C., Noakes T.D., Van Zyl C. High-Fat Diet versus Habitual Diet Prior to Carbohydrate Loading: Effects on Exercise Metabolism and Cycling Performance. Int. J. Sport Nutr. Exerc. Metab. 2001;11:209–225. doi: 10.1123/ijsnem.11.2.209.
    1. Beelen M., Burke L.M., Gibala M.J., van Loon L.J. Nutritional Strategies to Promote Postexercise Recovery. Int. J. Sport Nutr. Exerc. Metab. 2010;20:515–532. doi: 10.1123/ijsnem.20.6.515.
    1. Jentjens R., Jeukendrup A.E. Determinants of Post-Exercise Glycogen Synthesis During Short-Term Recovery. Sports Med. 2003;33:117–144. doi: 10.2165/00007256-200333020-00004.
    1. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016;48:543–568.
    1. Romijn J.A., Coyle E.F., Sidossis L.S., Gastaldelli A., Horowitz J.F., Endert E., Wolfe R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Metab. 1993;265:E380–E391. doi: 10.1152/ajpendo.1993.265.3.E380.
    1. Van Loon L.J.C., Greenhaff P., Constantin-Teodosiu D., Saris W.H.M., Wagenmakers A. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001;536:295–304. doi: 10.1111/j.1469-7793.2001.00295.x.
    1. Helge J., Richter E.A., Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. J. Physiol. 1996;492:293–306. doi: 10.1113/jphysiol.1996.sp021309.
    1. Soeters M., Soeters P.B., Schooneman M.G., Houten S., Romijn J.A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. Metab. 2012;303:E1397–E1407. doi: 10.1152/ajpendo.00397.2012.
    1. Havemann L., West S., Goedecke J., Macdonald I., Gibson A.S.C., Noakes T.D., Lambert E. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J. Appl. Physiol. 2006;100:194–202. doi: 10.1152/japplphysiol.00813.2005.
    1. Helge J.W. Long-term fat diet adaptation effects on performance, training capacity, and fat utilization. Med. Sci. Sports Exerc. 2002;34:1499–1504. doi: 10.1097/00005768-200209000-00016.
    1. Pellizzer A.M., Straznicky N.E., Lim S., Kamen P.W., Krum H. Reduced dietary fat intake increases parasympathetic activity in healthy premenopausal women. Clin. Exp. Pharmacol. Physiol. 1999;26:656–660. doi: 10.1046/j.1440-1681.1999.03103.x.
    1. Pendergast D.R., Leddy J.J., Venkatraman J.T. A perspective on fat intake in athletes. J. Am. Coll. Nutr. 2000;19:345–350. doi: 10.1080/07315724.2000.10718930.
    1. Havemann L. Ph.D. Thesis. University of Cape Town; Cape Town, South Africa: 2008. The effect of Fat-Adaptation Followed by Carbohydrate-Loading on Simulated Ultra-Endurance Race Performance.
    1. Durkalec-Michalski K., Nowaczyk P.M., Siedzik K. Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. J. Int. Soc. Sports Nutr. 2019;16:16. doi: 10.1186/s12970-019-0284-9.
    1. Cahill G.F. Alternate fuel utilization by brain. In: Passonneau J.V., Hawkins R.A., Lust W.D., Welsh F.A., editors. Cerebral Metabolism and Neural Function. Williams & Wilkins; Baltimore, MD, USA: 1980.
    1. Owen O.E., Morgan A.P., Kemp H.G., Sullivan J.M., Herrera M.G., Cahill G.F. Brain Metabolism during Fasting*. J. Clin. Investig. 1967;46:1589–1595. doi: 10.1172/JCI105650.
    1. Wentz A., D’Avignon D.A., Weber M.L., Cotter D.G., Doherty J.M., Kerns R., Nagarajan R., Reddy N., Sambandam N., Crawford P.A. Adaptation of Myocardial Substrate Metabolism to a Ketogenic Nutrient Environment. J. Biol. Chem. 2010;285:24447–24456. doi: 10.1074/jbc.M110.100651.
    1. Owen O.E. Ketone bodies as a fuel for the brain during starvation. Biochem. Mol. Biol. Educ. 2005;33:246–251. doi: 10.1002/bmb.2005.49403304246.
    1. Han Y.-M., Ramprasath T., Zou M.-H. β-hydroxybutyrate and its metabolic effects on age-associated pathology. Exp. Mol. Med. 2020;52:548–555. doi: 10.1038/s12276-020-0415-z.
    1. Achanta L.B., Rae C.D. β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem. Res. 2017;42:35–49. doi: 10.1007/s11064-016-2099-2.
    1. Newman J.C., Verdin E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017;37:51–76. doi: 10.1146/annurev-nutr-071816-064916.

Source: PubMed

3
Abonner