Antiviral Defense and Innate Immune Memory in the Oyster

Timothy J Green, Peter Speck, Timothy J Green, Peter Speck

Abstract

The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.

Keywords: Crassostrea; OsHV-1; RNAi; immune priming; interferon.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Conceptual diagram of the interferon-like antiviral response of Crassostrea gigas involving the TLR/NF-κB, RIG-1/MAVS, and putative cGAS/STING signaling pathways that result in the transcription of antiviral genes. The oyster genome encodes several novel toll-like receptors (TLRs) that lack transmembrane domains, implying they have a cytoplasmic function. These novel TLRs and downstream signaling adaptors are upregulated in response to OsHV-1 inoculation [34,36,52]. The oyster has a functional RIG-1 pathway that senses the presence of cytoplasmic dsRNA (i.e., polyI:C) and signals via downstream MAVS and TRAF adaptors [46]. The transcription factor IRF appears to function downstream of oyster MAVS and activates the IFN promoter and IFN stimulated response elements (ISRE) in mammalian cells [46,53]. Activation of IRF and NF-κB results in their translocation to the cell nucleus, leading to the transcription of antiviral genes. It is not currently known if oysters have a functional cGAS/STING-dependent antiviral response (pathway highlighted with grey arrows) [54]. The oyster genome encodes a STING homologue with three N-terminal transmembrane domains followed by a STING domain [10]. Oyster STING binds cyclic dinucleotides (CDNs) [55] and interacts with downstream TBK1 kinase [39]. Functional assays are required to determine if oyster cGAS binds cytosolic DNA and synthesizes CDNs. Note the unusual protein domains for RIG-like receptors and STING. Novel RIG-like receptors contain N-terminal death domains and novel STING either lack transmembrane domains or contain TIR domains [56]. TIR domain-containing proteins such as TLRs and interleukin-1 receptors are known to play key roles in innate immune signaling [57]. TLR, toll-like receptor; MyD88, myeloid differentiation primary response 88; IRAK, interleukin receptor-associated kinase; TRAF, TNF-receptor associated factor; IKK, IκB kinase; IκB, Inhibitor of κB; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; RIG-1, retinoic acid-inducible gene-1-like receptor; MAVS, mitochondria antiviral signaling protein; IFN, interferon; IRF, interferon regulatory factor; cGAS, cyclic GMP-AMP synthase; STING, stimulator of IFN genes; TBK1, tank binding kinase 1; STAT, signal transducer and activator of transcription; SOCS, suppressor of cytokine signaling; ISRE, IFN stimulated response element.

References

    1. Escoubas J.-M., Destoumieux-Garzon D., Montagnani C., Gourbal B., Duval D., Green T.J., Charriere G.M. Immunity in Molluscs. In: Ratcliffe M.J.H., editor. Encyclopedia of Immunobiology. Academic Press; Oxford, UK: 2016. pp. 417–436.
    1. Bickham U., Bayne C.J. Molluscan cells in culture: Primary cell cultures and cell lines. Can. J. Zool. 2013;91:391–404.
    1. Davison A.J., Eberia R., Ehlers B., Hayward G.S., McGeoch D.J., Minson A.C., Pellet P.E., Roizman B., Studdert M.J., Thiry E. The Order Herpesvirales. Arch. Virol. 2009;154:171–177. doi: 10.1007/s00705-008-0278-4.
    1. Segarra A., Pepin J.F., Arzul I., Morga B., Faury N., Renault T. Detection and Description of a Particular Ostreid Herpesvirus 1 Genotype Associated with Massive Mortality Outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res. 2010;153:92–99. doi: 10.1016/j.virusres.2010.07.011.
    1. Jenkins C., Hick P., Gabor M., Spiers Z., Fell S.A., Gu X., Read A., Go J., Dove M., O’Connor W., et al. Identification and Characterisation of an Ostreid Herpesvirus-1 Microvariant (OsHV-1 μ-Var) in Crassostrea gigas (Pacific Oysters) in Australia. Dis. Aquat. Org. 2013;105:109–126. doi: 10.3354/dao02623.
    1. Keeling S.E., Brosnahan C.L., R W., Gias E., Hannah M., Bueno R., McDonald W.L., Johnston C. New Zealand juvenile oyster mortality associated with Ostreid herpesvirus 1—An opportunisitic longitudinal study. Dis. Aquat. Org. 2014;109:231–239. doi: 10.3354/dao02735.
    1. Burge C.A., Griffin F.J., Friedman C.S. Mortality and herpesvirus infections of the Pacific oyster Crassostrea gigas in Tomales Bay, California, USA. Dis. Aquat. Org. 2006;72:31–43. doi: 10.3354/dao072031.
    1. Le Deuff R.M., Nicolas J.L., Renault T., Cochennec N. Experimental transmission of a Herpes-like virus to axenic Larvae of Pacific oyster, Crassostrea gigas. Bull. Eur. Assoc. Fish Pathol. 1994;14:69–72.
    1. Renault T., Cochennec N., le Deuff R., Chollet B. Herpes-like virus infecting Japanese oyster (Crassostrea gigas) Spat. Bull. Eur. Assoc. Fish Pathol. 1994;14:64–66.
    1. Green T.J., Raftos D.A., Speck P., Montagnani C. Antiviral immunity in marine molluscs. J. Gen. Virol. 2015;96:2471–2482. doi: 10.1099/jgv.0.000244.
    1. Guo X., Ford S.E. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philos. Trans. R. Soc. B. 2016 doi: 10.1098/rstb.2015.0206.
    1. Arzul I., Corbeil S., Morga B., Renault T. Viruses infecting marine molluscs. J. Invertebr. Pathol. 2017;147:118–135. doi: 10.1016/j.jip.2017.01.009.
    1. Mussabekova A., Daeffler L., Imler J.-L. Innate and intrinsic antiviral immunity in Drosophila. Cell. Mol. Life Sci. 2017;74:2039–2054. doi: 10.1007/s00018-017-2453-9.
    1. Sarkies P., Miska E.A. RNAi pathways in the recognition of foreign RNA: Antiviral responses and host-parasite interactions in nematodes. Biochem. Soc. Trans. 2013;41:876–880. doi: 10.1042/BST20130021.
    1. Randall R.E., Goodbourn S. Interferons and viruses: An interplay between induction, signalling, antiviral responses and viral countermeasures. J. Gen. Virol. 2008;89:1–47. doi: 10.1099/vir.0.83391-0.
    1. Blair C.D. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6:265–277. doi: 10.2217/fmb.11.11.
    1. Wilkins C., Dishongh R., Moore S.C., Whitt M.A., Chow M., Machaca K. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature. 2005;436:1044–1047. doi: 10.1038/nature03957.
    1. Weber F., Wagner V., Rasmussen S.B., Hartmann R., Pauldan S.R. Double-stranded RNA is produced by positive-stranded RNA viruses and DNA viruses but not in detectable amounts by negative-stranded RNA viruses. J. Virol. 2006;80:5059–5064. doi: 10.1128/JVI.80.10.5059-5064.2006.
    1. Tenoever B.R. RNA viruses and the host microRNA machinery. Nat. Rev. Microbiol. 2013;11:169–180. doi: 10.1038/nrmicro2971.
    1. Sabin L.R., Cherry S. Small creature use small RNAs to direct antiviral defenses. Eur. J. Immunol. 2013;43:27–33. doi: 10.1002/eji.201243201.
    1. Benitez A.A., Spanko L.A., Bouhaddou M., Sachs D., tenOever B.R. Engineered mammalian RNAi can elicit antiviral protection that Negates the requirement for the interferon response. Cell Rep. 2015;13:1456–1466. doi: 10.1016/j.celrep.2015.10.020.
    1. Schoggins J.W., Rice C.M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 2011;1:519–525. doi: 10.1016/j.coviro.2011.10.008.
    1. Aguado L.C., tenOever B.R. RNase III nucleases and the evolution of antiviral systems. BioEssays. 2017 doi: 10.1002/bies.201700173.
    1. Dostert C., Jouanguy E., Irving P., Troxler L., Galiana-Arnoux D., Hetru C., Hoffmann J.A., Imler J.-L. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat. Immunol. 2005;6:946–953. doi: 10.1038/ni1237.
    1. Paradkar P.N., Trinidad L., Voysey R., Duchemin J.-B., Walker P.J. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc. Natl. Acad. Sci. USA. 2012;109:18915–18920. doi: 10.1073/pnas.1205231109.
    1. Paradkar P.N., Duchemin J.-B., Voysey R., Walker P.J. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Neg. Trop. Pathog. 2014;8:e2823. doi: 10.1371/journal.pntd.0002823.
    1. Deddouche S., Matt N., Budd A., Mueller S., Kemp C., Galiana-Arnoux D., Dostert C., Antoniewski C., Hoffmann J.A., Imler J.-L. The Dexd/H-Box helicase Dicer-2 mediates induction of antiviral activity in Drosophila. Nat. Immunol. 2008;9:1425–1432. doi: 10.1038/ni.1664.
    1. Li C., Li H., Chen Y., Chen Y., Wang S., Weng S.-P., Xu X., He J. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp. Sci. Rep. 2015;5:15078. doi: 10.1038/srep15078.
    1. Li Y., Basavappa M., Lu J., Dong S., Cronkite D.A., Prior J.T., Reinecker H.-C., Hertzog P., Han Y., Li W.-X., et al. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol. 2016;2:16250. doi: 10.1038/nmicrobiol.2016.250.
    1. Zhang G., Fang X., Guo X., Li L., Luo R., Xu F., Yang P., Zhang L., Wang X., Qi H., et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54. doi: 10.1038/nature11413.
    1. Paul-Pont I., Evans O., Dhand N.K., Whittington R.J. Experimental infections of Pacific oyster Crassostrea gigas Using the Australian Ostreid herpesvirus-1 (OsHV-1) μvar strain. Dis. Aquat. Org. 2015;113:137–147. doi: 10.3354/dao02826.
    1. Schikorski D., Faury N., Pepin J.F., Saulnier D., Tourbiez D., Renault T. Experimental Ostreid herpesvirus 1 Infection of the Pacific oyster Crassostrea gigas: Kinetics of virus DNA detection by q-PCR in seawater and in oyster samples. Virus Res. 2011;155:28–34. doi: 10.1016/j.virusres.2010.07.031.
    1. Schikorski D., Renault T., Saulnier D., Faury N., Moreau P., Pepin J.F. Experimental infection of Pacific oyster Crassostrea gigas spat by Ostreid herpesvirus 1: Demonstration of oyster spat susceptibility. Vet. Res. 2011;42:27. doi: 10.1186/1297-9716-42-27.
    1. He Y., Jouaux A., Ford S.E., Lelong C., Sourdaine P., Mathieu M., Guo X. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol. 2015;46:131–144. doi: 10.1016/j.fsi.2015.05.023.
    1. Zhang L., Li L., Guo X., Litman G.W., Dishaw L.J., Zhang G. Massive expansion and functional divergence of innate immune genes in a Protostome. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep08693.
    1. Green T.J., Vergnes A., Montagnani C., de Lorgeril J. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Vet. Res. 2016;47:72. doi: 10.1186/s13567-016-0356-7.
    1. Rosani U., Varotto L., Domeneghetti S., Arcangeli G., Pallavicini A., Venier P. Dual analysis of host and pathogen transcriptomes in Ostreid herpesvirus 1—Positive Crassostrea gigas. Environ. Microbiol. 2015;17:4200–4212. doi: 10.1111/1462-2920.12706.
    1. Renault T., Faury N., Barbosa-Solomieu V., Moreau K. Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev. Comp. Immunol. 2011;35:725–735. doi: 10.1016/j.dci.2011.02.004.
    1. Tang X., Huang B., Zhang L., Li L., Zhang G. Tank-binding kinase-1 broadly affects oyster immune response to bacteria and viruses. Fish Shellfish Immunol. 2016;56:330–335. doi: 10.1016/j.fsi.2016.07.011.
    1. Fernandez-Trjuillo A., Ferro P., Garcia-Rosado E., Infante C., Alonso M.C., Bejar J., Borrego J.J., Manchado M. Poly I:C induces Mx transcription and promotes an antiviral state against Sole Aquabirnavirus in the flatfish Senegalese sole (Solea Senegalensis Kaup) Fish Shellfish Immunol. 2008;24:279–285. doi: 10.1016/j.fsi.2007.11.008.
    1. Plant K.P., Thune R.L. Cloning and characterisation of a channel catfish (Ictalurus Punctatus) Mx gene. Fish Shellfish Immunol. 2004;16:391–405. doi: 10.1016/j.fsi.2003.07.001.
    1. Green T.J., Montagnani C. Poly I:C Induces a protective antiviral immune response in the Pacific oyster (Crassostrea gigas) against subsequent challenge with Ostreid herpesvirus (OsHV-1 μVar) Fish Shellfish Immunol. 2013;35:382–388. doi: 10.1016/j.fsi.2013.04.051.
    1. Green T.J., Rolland J.-L., Vergnes A., Raftos D.A., Montagnani C. OsHV-1 countermeasures to the Pacific oyster’s anti-viral response. Fish Shellfish Immunol. 2015;47:435–443. doi: 10.1016/j.fsi.2015.09.025.
    1. Lafont M., Petton B., Vergnes A., Pauletto M., Segarra A., Gourbal B., Montagnani C. Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci. Rep. 2017;7:13143. doi: 10.1038/s41598-017-13564-0.
    1. Pauletto M., Segarra A., Montagnani C., Quillien V., Faury N., le Grand J., Miner P., Petton B., Labreuche Y., Fleury E., et al. Long dsRNAs promote an anti-viral response in Pacific oyster hampering Ostreid herpesvirus 1 replication. J. Exp. Biol. 2017;220:3671–3685. doi: 10.1242/jeb.156299.
    1. Huang B., Zhang L., Du Y., Xu F., Li L., Zhang G. Characterization of the mollusc RIG-I/MAVS pathway reveals an archaic antiviral signalling framework in invertebrates. Sci. Rep. 2017;7:8217. doi: 10.1038/s41598-017-08566-x.
    1. Green T.J., Speck P., Geng D., Raftos D.A., Beard M.R., Helbig K.J. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable hemolymph protein. J. Gen. Virol. 2015;96:3587–3597. doi: 10.1099/jgv.0.000300.
    1. Helbig K.J., Beard M.R. The Role of viperin in the innate antiviral response. J. Mol. Biol. 2014;426:1210–1219. doi: 10.1016/j.jmb.2013.10.019.
    1. Segarra A., Baillon L., Tourbiez D., Benabdelmouna A., Faury N., Bourgougnon N., Renault T. Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas. Vet. Res. 2014;45:103. doi: 10.1186/s13567-014-0103-x.
    1. Moreau P., Moreau K., Segarra A., Tourbiez D., Travers M.-A., Rubinsztein D.C., Renault T. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections. Autophagy. 2015;11:516–526. doi: 10.1080/15548627.2015.1017188.
    1. Martenot C., Gervais O., Chollet B., Houssin M., Renault T. Haemocytes collected from experimentally infected Pacific oysters, Crassostrea gigas: Detection of Ostreid herpesvirus 1 DNA, RNA, proteins in relation with inhibition of apoptosis. PLoS ONE. 2017;12:e0177448. doi: 10.1371/journal.pone.0177448.
    1. Du Y., Zhang L., Huang B., Guan X., Li L., Zhang G. Molecular cloning, characterization, expression of two myeloid differentiation factor 88 (MyD88) in Pacific oyster, Crassostrea gigas. J. World Aquac. Soc. 2013;44:759–774. doi: 10.1111/jwas.12077.
    1. Lu M., Yang C., Li M., Yi Q., Lu G., Wu Y., Qu C., Wang L., Song L. A Conserved interferon regulation factor 1 (IRF-1) from Pacific oyster Crassostrea gigas functioned as an activator of IFN pathway. Fish Shellfish Immunol. 2018;76:68–77. doi: 10.1016/j.fsi.2018.02.024.
    1. Margolis S.R., Wilson S.C., Vance R.E. Evolutionary Origins of cGAS-STING Signaling. Trends Immunol. 2017;38:733–743. doi: 10.1016/j.it.2017.03.004.
    1. Kranzusch P.J., Wilson S.C., Lee A.S.Y., Berger J.M., Doudna J.A., Vance R.E. Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2′,3′ Cgamp Signaling. Mol. Cell. 2015;59:891–903. doi: 10.1016/j.molcel.2015.07.022.
    1. Gerdol M. Immune-Related Genes in Gastropods and Bivalves: A Comparative Overview. ISJ Invertebr. Surviv. J. 2017;14:103–118.
    1. Jenkins K.A., Mansell A. TIR-containing adaptors in Toll-like receptor signalling. Cytokine. 2010;49:237–244. doi: 10.1016/j.cyto.2009.01.009.
    1. Jeffrey K.L., Li Y., Ding S. Reply to Questioning antiviral RNAi in mammals. Nat. Microbiol. 2017;2:17053. doi: 10.1038/nmicrobiol.2017.53.
    1. Gauthier M.E.A., Pasquier L.D., Degnan B.M. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol. Dev. 2010;12:519–533. doi: 10.1111/j.1525-142X.2010.00436.x.
    1. Schr¨oder H.C., Natalio F., Wiens M., Tahir M.N., Shukoor M.I., Tremel W., Belikov S.I., Krasko A., M¨uller W.E.G. The 2′-5′-Oligoadenylate synthetase in the lowest metazoa: Isolation, cloning, expression and functional activity in the Sponge Lubomirskia baicalensis. Mol. Immunol. 2008;45:945–953. doi: 10.1016/j.molimm.2007.07.036.
    1. Kuusksalu A., Subbi J., Pehk T., Reintamm T., Muller W.E.G., Kelve M. Identification of the reaction products of (2′-54)oligoadenylate synthetase in the marine sponge. Eur. J. Biochem. 1998;257:420–426. doi: 10.1046/j.1432-1327.1998.2570420.x.
    1. Owens L., Malham S. Review of the RNA interference pathway in molluscs including some possibilites for use in bivalve aquaculture. J. Mar. Sci. Eng. 2015;3:87–99. doi: 10.3390/jmse3010087.
    1. Rosani U., Gerdol M. A bioinformatics approach reveals seven nearly-complete RNA-virus genomes in bivalve RNA-seq data. Virus Res. 2017;239:33–42. doi: 10.1016/j.virusres.2016.10.009.
    1. Seo G.J., Kincaid R.P., Phanaksri T., Burke J.M., Pare J.M., Cox J.E., Hsiang T., Krug R.M., Sullivan C.S. Reciprocal Inhibition between Intracellular Antiviral Signaling and the RNAi Machinery in Mammalian Cells. Cell Host Microbe. 2013;14:435–445. doi: 10.1016/j.chom.2013.09.002.
    1. Girardi E., Lefevre M., Chane-Woon-Ming B., Paro S., Claydon B., Imler J.-L., Meignin C., Pfeffer S. Cross-Species Comparative Analysis of Dicer Proteins During Sindbis Virus Infection. Sci. Rep. 2015;5:10693. doi: 10.1038/srep10693.
    1. Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate Immune Pattern Recognition: A Cell Biological Perspective. Ann. Rev. Immunol. 2015;33:257–290. doi: 10.1146/annurev-immunol-032414-112240.
    1. Barber G.N. STING: Infection, Inflamation and Cancer. Nat. Rev. Immunol. 2015;15:760–770. doi: 10.1038/nri3921.
    1. Reinert L.S., Lopusna K., Winther H., Sun C., Thomsen M.K., Nandakumar R., Mogensen T.H., Meyer M., Vaegter C., Nyengaard J.R., et al. Sensing of HSV-1 by the cGAS-STING pathway in microglia orchestrates antiviral defence in the CNS. Nat. Commun. 2016;7:13348. doi: 10.1038/ncomms13348.
    1. Wu X., Wu F.-H., Wang X., Wang L., Siedow J.N., Zhang W., Pei Z.-M. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 2014;42:8243–8257. doi: 10.1093/nar/gku569.
    1. Zhong B., Yang Y., Li S., Wang Y.-Y., Li Y., Diao F., Lei C., He X., Zhang L., Tien P., Shu H.-B. The adaptor protein MITA Links virus-sening receptors to IRF3 transcription factor activation. Immunity. 2008;29:538–550. doi: 10.1016/j.immuni.2008.09.003.
    1. Woodward J.J., Iavarone A.T., Portnoy D.A. C-Di-Amp secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 2010;328:1703–1705. doi: 10.1126/science.1189801.
    1. Li H., Wang S., Lu K., Yin B., Xiao B., Li S., He J., Li C. An invertebrate STING from Shrimp activates an innate immune defense against bacterial infection. FEBS Lett. 2017;591:1010–1017. doi: 10.1002/1873-3468.12607.
    1. Green T.J., Montagnani C., Benkendorff K., Robinson N., Speck P. Ontogeny and water temperature influences the antiviral response of the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol. 2014;36:151–157. doi: 10.1016/j.fsi.2013.10.026.
    1. Stetson D.B., Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006;24:93–103. doi: 10.1016/j.immuni.2005.12.003.
    1. Hauton C., Smith V.J. Adaptive immunity in invertebrates: A straw house without a mechanistic foundation. BioEssays. 2007;29:1138–1146. doi: 10.1002/bies.20650.
    1. Degremont L., Lamy J.-B., Pepin J.-F., Travers M.-A., Renault T. New insight for the genetic evaluation of resistance to Ostreid herpesvirus infection, a worldwide disease, in Crassostrea gigas. PLoS ONE. 2015;10:e0127917. doi: 10.1371/journal.pone.0127917.
    1. Carrasco N., Gairin I., Perez J., Andree K.B., Roque A., Fernandez-Tejedor M., Rodgers C.J., Aguilera C., Furones M.D. A production calendar based on water temperature, spat size, husbandry practices reduce OsHV-1 μVar impact on cultured Pacific oyster Crassostrea gigas in the Ebro Delta (Calalonia), Mediterranean coast of Spain. Front. Physiol. 2017;8:125. doi: 10.3389/fphys.2017.00125.
    1. Paul-Pont I., Dhand N.K., Whittington R.J. Influence of husbandry practices on OsHV-1 associated mortality of Pacific oysters Crassostrea gigas. Aquaculture. 2013;412:202–214. doi: 10.1016/j.aquaculture.2013.07.038.
    1. Whittington R.J., Dhand N.K., Evans O., Paul-Pont I. Further observations on the influence of husbandry practives on OsHV-1 μVar mortality in Pacific oysters Crassostrea gigas: Age, cultivation structures and growing height. Aquaculture. 2015;438:82–97. doi: 10.1016/j.aquaculture.2014.12.040.
    1. Whittington R.J., Paul H.M., Evans O., Rubio A., Alford B., Dhand N., Paul-Pont I. Protection of Pacific oyster (Crassostrea gigas) spat from mortality due to Ostreid herpes virus-1 (OsHV-1 μVar) using simple treatments of incoming seawater in land-based upwellers. Aquaculture. 2015;437:10–20. doi: 10.1016/j.aquaculture.2014.11.016.
    1. Pernet F., Lupo C., Bacher C., Whittington R.J. Infectious disease in oyster aquaculture require a new integrated approach. Philos. Trans. R. Soc. B. 2016;371:20150213. doi: 10.1098/rstb.2015.0213.
    1. Degremont L., Garcia C., Allen S.K., Jr. Genetic improvement for disease resistance in oysters: A review. J. Invertebr. Pathol. 2015;131:221–241. doi: 10.1016/j.jip.2015.05.010.
    1. Pernet F., Barret J., le Gall P., Corporeau C., Degremont L.L., Lagarde F., Pepin J.F., Keck N. Mass mortalities of Pacific oysters Crassostrea gigas reflect infectious diseases and vary with farming practices in the Mediterranean Thau Lagoon, France. Aquac. Environ. Interact. 2012;2:215–237. doi: 10.3354/aei00041.
    1. Evans O., Hick P., Whittington R.J. Detection of Ostreid herpesvirus-1 microvariants in healthy Crassostrea gigas following disease events and Their Possible role as reservoirs of infection. J. Invertebr. Pathol. 2017;148:20–33. doi: 10.1016/j.jip.2017.05.004.
    1. Barbosa-Solomieu V., Degremont L., Vazquez-Juarez R., Ascencio-Valle F., Boudry P., Renault T. Ostreid herpesvirus 1 (OsHV-1) detection among three successive generations of Pacific oysters (Crassostrea gigas) Virus Res. 2005;107:47–56. doi: 10.1016/j.virusres.2004.06.012.
    1. Little T.J., Kraaijeveld A.R. Ecological and evolutionary implications of immunological priming in invertebrates. Trends Ecol. Evol. 2004;19:58–60. doi: 10.1016/j.tree.2003.11.011.
    1. Contreras-Garduno J., Lanz-Mendoza H., Franco B., Nava A., Pedraza-Reyes M., Canales-Lazcano J. Insect immune priming: Ecology and experimental evidences. Ecol. Entomol. 2016;41:351–366. doi: 10.1111/een.12300.
    1. Green T.J., Helbig K.J., Speck P., Raftos D.A. Primed for success: Oyster parents treated with Poly(I:C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection. Mol. Immunol. 2016;78:113–120. doi: 10.1016/j.molimm.2016.09.002.
    1. Gavery M.R., Roberts S.B. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147. doi: 10.7717/peerj.4147.
    1. Granada L., Lemos M.F.L., Cabral H.N., Bossier P., Novais S.C. Epigenetics in aquaculture—The last frontier. Rev. Aquac. 2017 doi: 10.1111/raq.12219.
    1. Green T.J., Benkendorff K., Robinson N., Raftos D., Speck P. Anti-viral gene induction is absent upon secondary challenge with double-Stranded RNA in the Pacific oyster, Crassostrea gigas. Fish Shellfish Immunol. 2014;39:492–497. doi: 10.1016/j.fsi.2014.06.010.
    1. Martins K.A.O., Bavari S., Salazar A.M. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev. Vaccines. 2015;14:447–459. doi: 10.1586/14760584.2015.966085.

Source: PubMed

3
Abonner