Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases

Richard I Horowitz, Phyllis R Freeman, James Bruzzese, Richard I Horowitz, Phyllis R Freeman, James Bruzzese

Abstract

Purpose: Infection with COVID-19 potentially can result in severe outcomes and death from "cytokine storm syndrome", resulting in novel coronavirus pneumonia (NCP) with severe dyspnea, acute respiratory distress syndrome (ARDS), fulminant myocarditis and multiorgan dysfunction with or without disseminated intravascular coagulation. No published treatment to date has been shown to adequately control the inflammation and respiratory symptoms associated with COVID-19, apart from oxygen therapy and assisted ventilation. We evaluated the effects of using high dose oral and/or IV glutathione in the treatment of 2 patients with dyspnea secondary to COVID-19 pneumonia.

Methods: Two patients living in New York City (NYC) with a history of Lyme and tick-borne co-infections experienced a cough and dyspnea and demonstrated radiological findings consistent with novel coronavirus pneumonia (NCP). A trial of 2 g of PO or IV glutathione was used in both patients and improved their dyspnea within 1 h of use. Repeated use of both 2000 mg of PO and IV glutathione was effective in further relieving respiratory symptoms.

Conclusion: Oral and IV glutathione, glutathione precursors (N-acetyl-cysteine) and alpha lipoic acid may represent a novel treatment approach for blocking NF-κB and addressing "cytokine storm syndrome" and respiratory distress in patients with COVID-19 pneumonia.

Keywords: ARDS; COVID 19; Glutathione; N-acetyl-cysteine; NF-κB; Pneumonia.

Conflict of interest statement

The authors, Richard I Horowitz, Phyllis R Freeman, and James Bruzzese declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

© 2020 The Authors.

References

    1. Valencia, Damian N. Brief review on COVID-19: the 2020 pandemic caused by SARS-CoV-2. Cureus. 2020;12(3)
    1. WHO Severe acute respiratory syndrome (SARS) WHO.
    1. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D.M.E., Fouchier R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi arabia. N. Engl. J. Med. 2012;367(19):1814–1820. doi: 10.1056/NEJMoa1211721.
    1. He F, Deng Y, Li W. Coronavirus disease 2019: what we know? J. Med. Virol. n/a(n/a). doi:10.1002/jmv.25766.
    1. American Academy of Otolaryngology Head and Neck Surgery Coronavirus disease 2019: resources. Published March 15, 2020. Accessed March 29, 2020.
    1. Zhang J.-J., Dong X., Cao Y.-Y. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. February 2020 doi: 10.1111/all.14238.
    1. Singhal T. A review of coronavirus disease-2019 (COVID-19) Indian J. Pediatr. 2020;87(4):281–286. doi: 10.1007/s12098-020-03263-6.
    1. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. March. 2020:201187. doi: 10.1148/radiol.2020201187.
    1. van den Brand J.M., Smits S.L., Haagmans B.L. Pathogenesis of Middle East respiratory syndrome coronavirus. J. Pathol. 2015;235(2):175–184. doi: 10.1002/path.4458.
    1. Vardavas C.I., Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob. Induc. Dis. 2020;18 doi: 10.18332/tid/119324.
    1. Shi Y., Yu X., Zhao H., Wang H., Zhao R., Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit. Care. 2020;24 doi: 10.1186/s13054-020-2833-7.
    1. Garg S. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 — COVID-NET, 14 States, March 1–30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69 doi: 10.15585/mmwr.mm6915e3.
    1. Zhou F., Yu T., Du R. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. March. 2020 doi: 10.1016/S0140-6736(20)30566-3.
    1. Dietz W, Santos‐Burgoa C. Obesity and its implications for COVID-19 mortality. Obesity. n/a(n/a). doi:10.1002/oby.22818.
    1. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Dey S.K., Rahman M.M., Siddiqi U.R., Howlader A. Analyzing the epidemiological outbreak of COVID-19: a visual exploratory data analysis approach. J Med Virol. March. 2020 doi: 10.1002/jmv.25743.
    1. Coronavirus.
    1. Baud D., Qi X., Nielsen-Saines K., Musso D., Pomar L., Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30195-X. 0(0)
    1. McMichael T.M., Currie D.W., Clark S. Epidemiology of covid-19 in a long-term care facility in king county, Washington. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2005412. 0(0)
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. March. 2020 doi: 10.1007/s00134-020-05991-x.
    1. Yang X., Yu Y., Xu J. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30079-5. 0(0)
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Karakike E., Giamarellos-Bourboulis E.J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00055.
    1. Wang W., He J., puyi Lie. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: disease characteristics and retrospective analysis. Intensive Care and Critical Care Medicine. 2020 doi: 10.1101/2020.02.26.20026989.
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. March 2020 doi: 10.1016/j.jpha.2020.03.001.
    1. Gu J., Gong E., Zhang B. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202(3):415–424. doi: 10.1084/jem.20050828.
    1. Wong C.K., Lam C.W.K., Wu A.K.L. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136(1):95–103. doi: 10.1111/j.1365-2249.2004.02415.x.
    1. Zhang Y., Li J., Zhan Y. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 2004;72(8):4410–4415. doi: 10.1128/IAI.72.8.4410-4415.2004.
    1. Huppert L.A., Matthay M.A., Ware L.B. Pathogenesis of acute respiratory distress syndrome. Semin. Respir. Crit. Care Med. 2019;40(1):31–39. doi: 10.1055/s-0039-1683996.
    1. Matthay M.A., Zemans R.L. The acute respiratory distress syndrome: pathogenesis and treatment. Annu. Rev. Pathol. 2011;6:147–163. doi: 10.1146/annurev-pathol-011110-130158.
    1. Zhang Y., Xiao M., Zhang S. Coagulopathy and antiphospholipid antibodies in patients with covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2007575. 0(0)
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemostasis. 2020;18(4):844–847. doi: 10.1111/jth.14768.
    1. Pierrakos C., Karanikolas M., Scolletta S., Karamouzos V., Velissaris D. Acute respiratory distress syndrome: pathophysiology and therapeutic options. J. Clin. Med. Res. 2012;4(1):7–16. doi: 10.4021/jocmr761w.
    1. Martin T.R. Lung cytokines and ARDS: roger S. Mitchell lecture. Chest. 1999;116(1 Suppl):2S–8S. doi: 10.1378/chest.116.suppl_1.2s.
    1. Wohlrab P., Kraft F., Tretter V., Ullrich R., Markstaller K., Klein K.U. Recent advances in understanding acute respiratory distress syndrome. F1000Research. 2018;7 doi: 10.12688/f1000research.11148.1.
    1. Windsor A.C., Mullen P.G., Fowler A.A., Sugerman H.J. Role of the neutrophil in adult respiratory distress syndrome. Br. J. Surg. 1993;80(1):10–17. doi: 10.1002/bjs.1800800106.
    1. Gadek J.E., Pacht E.R. The interdependence of lung antioxidants and antiprotease defense in ARDS. Chest. 1996;110(6):273S–277S. doi: 10.1378/chest.110.6_Supplement.273S.
    1. von Bismarck P., Klemm K., García Wistädt C.-F., Winoto-Morbach S., Schütze S., Krause M.F. Selective NF-kappaB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model. Pulm. Pharmacol. Therapeut. 2009;22(4):297–304. doi: 10.1016/j.pupt.2009.02.002.
    1. Gasparini C., Feldmann M. NF-κB as a target for modulating inflammatory responses. Curr. Pharmaceut. Des. 2012;18(35):5735–5745. doi: 10.2174/138161212803530763.
    1. Khachigian L.M., Collins T., Fries J.W. N-acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo. Am. J. Pathol. 1997;151(5):1225–1229.
    1. Zhang W.J., Frei B. Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(13):2423–2432. doi: 10.1096/fj.01-0260com.
    1. Suzuki Y.J., Aggarwal B.B., Packer L. Alpha-lipoic acid is a potent inhibitor of NF-kappa B activation in human T cells. Biochem. Biophys. Res. Commun. 1992;189(3):1709–1715. doi: 10.1016/0006-291x(92)90275-p.
    1. Rahman A., Fazal F. Blocking NF-κB. Proc. Am. Thorac. Soc. 2011;8(6):497–503. doi: 10.1513/pats.201101-009MW.
    1. Cho S., Urata Y., Iida T. Glutathione downregulates the phosphorylation of I kappa B: autoloop regulation of the NF-kappa B-mediated expression of NF-kappa B subunits by TNF-alpha in mouse vascular endothelial cells. Biochem. Biophys. Res. Commun. 1998;253(1):104–108. doi: 10.1006/bbrc.1998.9697.
    1. Bernard G.R. Potential of N-acetylcysteine as treatment for the adult respiratory distress syndrome. Eur. Respir. J. Suppl. 1990;11:496s–498s.
    1. Pacht E.R., Timerman A.P., Lykens M.G., Merola A.J. Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest. 1991;100(5):1397–1403. doi: 10.1378/chest.100.5.1397.
    1. Wu G., Fang Y.-Z., Yang S., Lupton J.R., Turner N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004;134(3):489–492. doi: 10.1093/jn/134.3.489.
    1. Hüttenbrink K.-B., Hummel T., Berg D., Gasser T., Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Ärztebl Int. 2013;110(1–2):1–7. doi: 10.3238/arztebl.2013.0001.
    1. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. April. 2020:1–11. doi: 10.1007/s00405-020-05965-1.
    1. Horowitz RI, Freeman PR. <p>Precision medicine: retrospective chart review and data analysis of 200 patients on dapsone combination therapy for chronic Lyme disease/post-treatment Lyme disease syndrome: part 1</p>. Int. J. Gen. Med. doi:10.2147/IJGM.S193608.
    1. Horowitz R.I., Freeman P.R. Precision medicine: the role of the MSIDS model in defining, diagnosing, and treating chronic Lyme disease/post treatment Lyme disease syndrome and other chronic illness: Part 2. Healthcare. 2018;6(4):129. doi: 10.3390/healthcare6040129.
    1. Clarkson T.W., Magos L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006;36(8):609–662. doi: 10.1080/10408440600845619.
    1. Patrick L. Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern Med Rev J Clin Ther. 2002;7(6):456–471.
    1. Citera M, Freeman PR, Horowitz RI. Empirical validation of the Horowitz multiple systemic infectious disease syndrome questionnaire for suspected Lyme disease. Int. J. Gen. Med. doi:10.2147/IJGM.S140224.
    1. Butler T. The jarisch-herxheimer reaction after antibiotic treatment of spirochetal infections: a review of recent cases and our understanding of pathogenesis. Am. J. Trop. Med. Hyg. 2017;96(1):46–52. doi: 10.4269/ajtmh.16-0434.
    1. Negussie Y., Remick D.G., DeForge L.E., Kunkel S.L., Eynon A., Griffin G.E. Detection of plasma tumor necrosis factor, interleukins 6, and 8 during the Jarisch-Herxheimer Reaction of relapsing fever. J. Exp. Med. 1992;175(5):1207–1212. doi: 10.1084/jem.175.5.1207.
    1. Horowitz R.I. 16th International Scientific Conference on Lyme Disease & Other Tick-Borne Disorders. H. Presented at the: June. 2003. Effects of shifting the acid-base balance among Lyme patients during jarish herxheimer flares: a small prospective study. (Hartford CT)
    1. Kerstholt M., Vrijmoeth H., Lachmandas E. Role of glutathione metabolism in host defense against Borrelia burgdorferi infection. Proc. Natl. Acad. Sci. U. S. A. 2018;115(10):E2320–E2328. doi: 10.1073/pnas.1720833115.
    1. Horowitz R. 1 edition. St. Martin’s Griffin; New York, NY: 2017. How Can I Get Better?: an Action Plan for Treating Resistant Lyme & Chronic Disease.
    1. Horowitz R. 1 edition. St. Martin’s Press; New York: 2013. Why Can't I Get Better? Solving the Mystery of Lyme and Chronic Disease.
    1. Pan F., Ye T., Sun P. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. February 2020:200370. doi: 10.1148/radiol.2020200370.
    1. Shankar A.H., Prasad A.S. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998;68(2 Suppl):447S–463S.
    1. Prasad A.S., Beck F.W.J., Bao B. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007;85(3):837–844.
    1. Prasad A.S., Bao B., Beck F.W.J., Kucuk O., Sarkar F.H. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004;37(8):1182–1190. doi: 10.1016/j.freeradbiomed.2004.07.007.
    1. Hemilä H., Louhiala P. Vitamin C may affect lung infections. J. R. Soc. Med. 2007;100(11):495–498.
    1. Hemilä H. Vitamin C and community-acquired pneumonia. Am. J. Respir. Crit. Care Med. 2011;184(5):621–622. doi: 10.1164/ajrccm.184.5.621a.
    1. Do vitamins C and E affect respiratory infections?
    1. Shay K.P., Moreau R.F., Smith E.J., Smith A.R., Hagen T.M. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta. 2009;1790(10):1149–1160. doi: 10.1016/j.bbagen.2009.07.026.
    1. Zhang Q., Ju Y., Ma Y., Wang T. N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia. Medicine (Baltim.) 2018;97(45) doi: 10.1097/MD.0000000000013087.
    1. Soltan-Sharifi Mohammad Sadegh, Mojtahedzadeh Mojtaba, Najafi Atabak, Reza Khajavi Mohammad, Rouini Mohammad Reza, Moradi Mandana, Mohammadirad Azadeh, Abdollahi Mohammad. Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. 2007.
    1. Voskresenska N., Voicehovska J., Babikovs S. Glutathione level in community-acquired pneumonia patients. Eur. Respir. J. 2017;50(suppl 61) doi: 10.1183/1393003.congress-2017.PA988.
    1. Kobayashi E.H., Suzuki T., Funayama R. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 2016;7 doi: 10.1038/ncomms11624.
    1. Derosa G., Maffioli P., Simental-Mendía L.E., Bo S., Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2016;111:394–404. doi: 10.1016/j.phrs.2016.07.004.
    1. Yadav V.S., Mishra K.P., Singh D.P., Mehrotra S., Singh D.V.K. Immunomodulatory effects of curcumin. Immunopharmacol. Immunotoxicol. 2005;27(3):485–497. doi: 10.1080/08923970500242244.
    1. Subedi L., Lee J.H., Yumnam S., Ji E., Kim S.Y. Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-κB inhibition and Nrf2/HO-1 activation. Cells. 2019;8(2) doi: 10.3390/cells8020194.
    1. Lakkur S., Judd S., Bostick R.M. Oxidative stress, inflammation, and markers of cardiovascular health. Atherosclerosis. 2015;243(1):38–43. doi: 10.1016/j.atherosclerosis.2015.08.032.
    1. Siddiqui A., Desai N.G., Sharma S.B., Aslam M., Sinha U.K., Madhu S.V. Association of oxidative stress and inflammatory markers with chronic stress in patients with newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2019;35(5):e3147. doi: 10.1002/dmrr.3147.
    1. Niki E. Lipid peroxidation products as oxidative stress biomarkers. BioFactors Oxf Engl. 2008;34(2):171–180.
    1. Rahman M.M., McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat. Rev. Microbiol. 2011;9(4):291–306. doi: 10.1038/nrmicro2539.
    1. Abraham E. The dichotomy of inhibiting nuclear factor kappa-B in pneumonia. Crit. Care. 2013;17(3):152. doi: 10.1186/cc12722.
    1. Liu G., Park Y.-J., Tsuruta Y., Lorne E., Abraham E. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. J Immunol Baltim Md. 1950;182(8):5063–5071. doi: 10.4049/jimmunol.0803526. 2009.
    1. Everhart M.B., Han W., Sherrill T.P. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J Immunol Baltim Md. 1950;176(8):4995–5005. doi: 10.4049/jimmunol.176.8.4995. 2006.

Source: PubMed

3
Abonner