Genetic Factors in the Pathogenesis of Nonalcoholic Fatty Liver and Steatohepatitis

Paola Dongiovanni, Stefano Romeo, Luca Valenti, Paola Dongiovanni, Stefano Romeo, Luca Valenti

Abstract

Liver fat accumulation generally related to systemic insulin resistance characterizes nonalcoholic fatty liver disease (NAFLD), which in the presence of nonalcoholic steatohepatitis (NASH) can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver disease in Western countries. Epidemiological, familial, and twin studies provide evidence for a strong genetic component of NAFLD susceptibility. Recently, genome-wide association studies led to the identification of the major inherited determinants of hepatic fat accumulation: patatin-like phospholipase domain-containing 3 (PNPLA3) I148M gene and transmembrane 6 superfamily member 2 (TM6SF2) E167K gene variants, involved in lipid droplets remodelling and very low-density lipoproteins secretion, are the major determinants of interindividual differences in liver steatosis, and susceptibility to progressive NASH. In this review, we aimed to provide an overview of recent insights into the genetics of hepatic fat accumulation and steatohepatitis.

Figures

Figure 1
Figure 1
Molecular genetics of NASH. (a) NAFLD is characterized by the hepatic fat accumulation in lipid droplets resulting from an unbalance between triglycerides acquisition and secretion. FFA stored as triglycerides during hepatic steatosis derive from peripheral lipolysis related to adipose tissue insulin resistance, followed by de novo lipogenesis induced by hyperinsulinemia, and excessive food intake. In the liver, FFA can be catabolized through β-oxidation and reesterification to triglycerides and stored as lipid droplets or exported as VLDL. (b) PNPLA3 I148M variant is attached on the surface of lipid droplets reducing triglyceride breakdown leading to lipid retention in the hepatocyte lipid droplet. (c) TM6SF2 E167K variant reduces triglycerides secretion through VLDL, leading to hepatocellular retention of lipids.

References

    1. Marchesini G., Brizi M., Blanchi G., et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–1850. doi: 10.2337/diabetes.50.8.1844.
    1. Day C. P. From fat to inflammation. Gastroenterology. 2006;130(1):207–210. doi: 10.1053/j.gastro.2005.11.017.
    1. Bugianesi E., Leone N., Vanni E., et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002;123(1):134–140. doi: 10.1053/gast.2002.34168.
    1. Browning J. D., Szczepaniak L. S., Dobbins R., et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40(6):1387–1395. doi: 10.1002/hep.20466.
    1. Bellentani S., Saccoccio G., Masutti F., et al. Prevalence of and risk factors for hepatic steatosis in northern Italy. Annals of Internal Medicine. 2000;132(2):112–117.
    1. Schwimmer J. B., Celedon M. A., Lavine J. E., et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136(5):1585–1592. doi: 10.1053/j.gastro.2009.01.050.
    1. Guerrero R., Vega G. L., Grundy S. M., Browning J. D. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;49(3):791–801. doi: 10.1002/hep.22726.
    1. Romeo S., Kozlitina J., Xing C., et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics. 2008;40(12):1461–1465. doi: 10.1038/ng.257.
    1. Dongiovanni P., Donati B., Fares R., et al. PNPLA3 I148M polymorphism and progressive liver disease. World Journal of Gastroenterology. 2013;19(41):6969–6978. doi: 10.3748/wjg.v19.i41.6969.
    1. Zelber-Sagi S., Salomone F., Yeshua H., et al. Non-high-density lipoprotein cholesterol independently predicts new onset of non-alcoholic fatty liver disease. Liver International. 2014;34(6):e128–e135. doi: 10.1111/liv.12318.
    1. Kozlitina J., Smagris E., Stender S., et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics. 2014;46(4):352–356. doi: 10.1038/ng.2901.
    1. Dongiovanni P., Petta S., Maglio C., et al. TM6SF2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2014 doi: 10.1002/hep.27490.
    1. Valenti L., Fracanzani A. L., Dongiovanni P., et al. Tumor necrosis factor α promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology. 2002;122(2):274–280. doi: 10.1053/gast.2002.31065.
    1. Dongiovanni P., Valenti L., Rametta R., et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59(2):267–273. doi: 10.1136/gut.2009.190801.
    1. Valenti L., Canavesi E., Galmozzi E., et al. Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease. Journal of Hepatology. 2010;53(5):927–933. doi: 10.1016/j.jhep.2010.05.023.
    1. Al-Serri A., Anstee Q. M., Valenti L., et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. Journal of Hepatology. 2012;56(2):448–454. doi: 10.1016/j.jhep.2011.05.029.
    1. Valenti L., Rametta R., Dongiovanni P., et al. The A736V TMPRSS6 polymorphism influences hepatic iron overload in nonalcoholic fatty liver disease. PLoS ONE. 2012;7(11) doi: 10.1371/journal.pone.0048804.e48804
    1. Valenti L., Fracanzani A. L., Bugianesi E., et al. HFE genotype, parenchymal iron accumulation, and liver fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2010;138(3):905–912. doi: 10.1053/j.gastro.2009.11.013.
    1. Miele L., Beale G., Patman G., et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135(1):282–291. doi: 10.1053/j.gastro.2008.04.004.
    1. Dongiovanni P., Anstee Q. M., Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Current Pharmaceutical Design. 2013;19(29):5219–5238. doi: 10.2174/13816128113199990381.
    1. Kleiner D. E., Brunt E. M., van Natta M., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701.
    1. Cohen J. C., Horton J. D., Hobbs H. H. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–1523. doi: 10.1126/science.1204265.
    1. Fabbrini E., Mohammed B. S., Magkos F., Korenblat K. M., Patterson B. W., Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134(2):424–431. doi: 10.1053/j.gastro.2007.11.038.
    1. Yamaguchi K., Yang L., McCall S., et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45(6):1366–1374. doi: 10.1002/hep.21655.
    1. Donnelly K. L., Smith C. I., Schwarzenberg S. J., Jessurun J., Boldt M. D., Parks E. J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation. 2005;115(5):1343–1351. doi: 10.1172/JCI200523621.
    1. Bugianesi E., Gastaldelli A., Vanni E., et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48(4):634–642. doi: 10.1007/s00125-005-1682-x.
    1. Marchesini G., Brizi M., Morselli-Labate A. M., et al. Association of nonalcoholic fatty liver disease with insulin resistance. The American Journal of Medicine. 1999;107(5):450–455. doi: 10.1016/s0002-9343(99)00271-5.
    1. Korenblat K. M., Fabbrini E., Mohammed B. S., Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008;134(5):1369–1375. doi: 10.1053/j.gastro.2008.01.075.
    1. Targher G., Day C. P., Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. The New England Journal of Medicine. 2010;363(14):1341–1350. doi: 10.1056/nejmra0912063.
    1. Day C. P., James O. F. W. Steatohepatitis: a tale of two ‘Hits’? Gastroenterology. 1998;114(4):842–845. doi: 10.1016/s0016-5085(98)70599-2.
    1. Tilg H., Moschen A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–1846. doi: 10.1002/hep.24001.
    1. Valenti L., Fracanzani A. L., Fargion S. The immunopathogenesis of alcoholic and nonalcoholic steatohepatitis: two triggers for one disease? Seminars in Immunopathology. 2009;31(3):359–369. doi: 10.1007/s00281-009-0152-9.
    1. Miele L., Valenza V., la Torre G., et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–1887. doi: 10.1002/hep.22848.
    1. Bardella M. T., Valenti L., Pagliari C., et al. Searching for coeliac disease in patients with non-alcoholic fatty liver disease. Digestive and Liver Disease. 2004;36(5):333–336. doi: 10.1016/j.dld.2004.01.012.
    1. Anstee Q. M., Daly A. K., Day C. P. Genetics of alcoholic and nonalcoholic fatty liver disease. Seminars in Liver Disease. 2011;31(2):128–146. doi: 10.1055/s-0031-1276643.
    1. Willner I. R., Waters B., Patil S. R., Reuben A., Morelli J., Riely C. A. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. The American Journal of Gastroenterology. 2001;96(10):2957–2961. doi: 10.1016/s0002-9270(01)03229-4.
    1. Makkonen J., Pietiläinen K. H., Rissanen A., Kaprio J., Yki-Järvinen H. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. Journal of Hepatology. 2009;50(5):1035–1042. doi: 10.1016/j.jhep.2008.12.025.
    1. Takehara T., Tatsumi T., Suzuki T., et al. Hepatocyte-specific disruption of Bcl-x L leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127(4):1189–1197. doi: 10.1053/j.gastro.2004.07.019.
    1. Minamiyama Y., Takemura S., Kodai S., et al. Iron restriction improves type 2 diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. The American Journal of Physiology—Endocrinology and Metabolism. 2010;298(6):E1140–E1149. doi: 10.1152/ajpendo.00620.2009.
    1. Kirsch R., Sijtsema H. P., Tlali M., Marais A. D., Hall P. D. L. M. Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease. Liver International. 2006;26(10):1258–1267. doi: 10.1111/j.1478-3231.2006.01329.x.
    1. Huang Y., He S., Li J. Z., et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(17):7892–7897. doi: 10.1073/pnas.1003585107.
    1. He S., McPhaul C., Li J. Z., et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. The Journal of Biological Chemistry. 2010;285(9):6706–6715. doi: 10.1074/jbc.M109.064501.
    1. Pingitore P., Pirazzi C., Mancina R. M., et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids. 2014;1841(4):574–580. doi: 10.1016/j.bbalip.2013.12.006.
    1. Pirazzi C., Valenti L., Motta B. M., et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Human Molecular Genetics. 2014;23(15):4077–4085. doi: 10.1093/hmg/ddu121.
    1. Pirazzi C., Adiels M., Burza M. A., et al. Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro. Journal of Hepatology. 2012;57:1257–1262. doi: 10.1016/j.jhep.2012.07.030.
    1. Ruhanen H., Perttilä J. D., Hölttä-Vuori M. D., et al. PNPLA3 mediates hepatocyte triacylglycerol remodeling. Journal of Lipid Research. 2014;55(4):739–746. doi: 10.1194/jlr.m046607.
    1. Yuan X., Waterworth D., Perry J. R. B., et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. American Journal of Human Genetics. 2008;83(4):520–528. doi: 10.1016/j.ajhg.2008.09.012.
    1. Johansson L. E., Lindblad U., Larsson C. A., Råstam L., Ridderstråle M. Polymorphisms in the adiponutrin gene are associated with increased insulin secretion and obesity. European Journal of Endocrinology. 2008;159(5):577–583. doi: 10.1530/EJE-08-0426.
    1. Kotronen A., Johansson L. E., Johansson L. M., et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia. 2009;52(6):1056–1060. doi: 10.1007/s00125-009-1285-z.
    1. Kotronen A., Peltonen M., Hakkarainen A., et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–872. doi: 10.1053/j.gastro.2009.06.005.
    1. Kollerits B., Coassin S., Beckmann N. D., et al. Genetic evidence for a role of adiponutrin in the metabolism of apolipoprotein B-containing lipoproteins. Human Molecular Genetics. 2009;18(23):4669–4676. doi: 10.1093/hmg/ddp424.
    1. Sookoian S., Castaño G. O., Burgueño A. L., Gianotti T. F., Rosselli M. S., Pirola C. J. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. The Journal of Lipid Research. 2009;50(10):2111–2116. doi: 10.1194/jlr.p900013-jlr200.
    1. Kantartzis K., Peter A., Machicao F., et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes. 2009;58(11):2616–2623. doi: 10.2337/db09-0279.
    1. Romeo S., Sentinelli F., Dash S., et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. International Journal of Obesity. 2010;34(1):190–194. doi: 10.1038/ijo.2009.216.
    1. Rotman Y., Koh C., Zmuda J. M., Kleiner D. E., Liang T. J. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology. 2010;52(3):894–903. doi: 10.1002/hep.23759.
    1. Speliotes E. K., Butler J. L., Palmer C. D., Voight B. F., Hirschhorn J. N. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology. 2010;52(3):904–912. doi: 10.1002/hep.23768.
    1. Valenti L., Al-Serri A., Daly A. K., et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin i148m polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(4):1209–1217. doi: 10.1002/hep.23622.
    1. Sookoian S., Pirola C. J. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53(6):1883–1894. doi: 10.1002/hep.24283.
    1. Romeo S., Sentinelli F., Cambuli V. M., et al. The 148M allele of the PNPLA3 gene is associated with indices of liver damage early in life. Journal of Hepatology. 2010;53(2):335–338. doi: 10.1016/j.jhep.2010.02.034.
    1. Santoro N., Kursawe R., D'Adamo E., et al. A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology. 2010;52(4):1281–1290. doi: 10.1002/hep.23832.
    1. Valenti L., Alisi A., Galmozzi E., et al. I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease. Hepatology. 2010;52(4):1274–1280. doi: 10.1002/hep.23823.
    1. Viitasalo A., Pihlajamaki J., Lindi V., et al. Associations of I148M variant in PNPLA3 gene with plasma ALT levels during 2-year follow-up in normal weight and overweight children: the PANIC study. Pediatric Obesity. 2014 doi: 10.1111/ijpo.234.
    1. Romeo S., Sentinelli F., Dash S., et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent>. International Journal of Obesity. 2010;34(1):190–194. doi: 10.1038/ijo.2009.216.
    1. Miraglia del Giudice E., Grandone A., Cirillo G., et al. The association of PNPLA3 variants with liver enzymes in childhood obesity is driven by the interaction with abdominal fat. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0027933.e27933
    1. Graff M., North K. E., Franceschini N., et al. PNPLA3 gene-by-visceral adipose tissue volume interaction and the pathogenesis of fatty liver disease: the NHLBI Family Heart Study. International Journal of Obesity. 2013;37(3):432–438. doi: 10.1038/ijo.2012.65.
    1. Tian C., Stokowski R. P., Kershenobich D., Ballinger D. G., Hinds D. A. Variant in PNPLA3 is associated with alcoholic liver disease. Nature Genetics. 2010;42(1):21–23. doi: 10.1038/ng.488.
    1. Valenti L., Rumi M., Galmozzi E., et al. Patatin-Like phospholipase domain-containing 3 I148M polymorphism, steatosis, and liver damage in chronic hepatitis C. Hepatology. 2011;53(3):791–799. doi: 10.1002/hep.24123.
    1. Viganò M., Valenti L., Lampertico P., et al. Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B. Hepatology. 2013;58(4):1245–1252. doi: 10.1002/hep.26445.
    1. Valenti L., Maggioni P., Piperno A., et al. Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis. World Journal of Gastroenterology. 2012;18(22):2813–2820. doi: 10.3748/wjg.v18.i22.2813.
    1. Davis J. N., Lê K.-A., Walker R. W., et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. The American Journal of Clinical Nutrition. 2010;92(6):1522–1527. doi: 10.3945/ajcn.2010.30185.
    1. Nobili V., Liccardo D., Bedogni G., et al. Influence of dietary pattern, physical activity, and I148M PNPLA3 on steatosis severity in at-risk adolescents. Genes and Nutrition. 2014;9(3) doi: 10.1007/s12263-014-0392-8.
    1. Sevastianova K., Santos A., Kotronen A., et al. Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans. American Journal of Clinical Nutrition. 2012;96(4):727–734. doi: 10.3945/ajcn.112.038695.
    1. Santoro N., Savoye M., Kim G., et al. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake. PLoS ONE. 2012;7(5) doi: 10.1371/journal.pone.0037827.e37827
    1. Nobili V., Bedogni G., Donati B., Alisi A., Valenti L. The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-Alcoholic fatty liver disease. Journal of Medicinal Food. 2013;16(10):957–960. doi: 10.1089/jmf.2013.0043.
    1. Trépo E., Pradat P., Potthoff A., et al. Impact of patatin-like phospholipase-3 (rs738409 C>G) polymorphism on fibrosis progression and steatosis in chronic hepatitis C. Hepatology. 2011;54(1):60–69. doi: 10.1002/hep.24350.
    1. Valenti L., Aghemo A., Stättermayer A. F., et al. Implications of PNPLA3 polymorphism in chronic hepatitis C patients receiving peginterferon plus ribavirin. Alimentary Pharmacology and Therapeutics. 2012;35(12):1434–1442. doi: 10.1111/j.1365-2036.2012.05109.x.
    1. Valenti L., Colombo M., Fargion S. Modulation of the effect of PNPLA3 I148M mutation on steatosis and liver damage by alcohol intake in patients with chronic hepatitis C. Journal of Hepatology. 2011;55(6):1470–1471. doi: 10.1016/j.jhep.2011.04.032.
    1. Stickel F., Buch S., Lau K., et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology. 2011;53(1):86–95. doi: 10.1002/hep.24017.
    1. Falleti E., Fabris C., Cmet S., et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver International. 2011;31(8):1137–1143. doi: 10.1111/j.1478-3231.2011.02534.x.
    1. Trepo E., Guyot E., Ganne-Carrie N., et al. PNPLA3 (rs738409 C>G) is a common risk variant associated with hepatocellular carcinoma in alcoholic cirrhosis. Hepatology. 2012;55(4):1307–1308. doi: 10.1002/hep.25518.
    1. Nischalke H. D., Berger C., Luda C., et al. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS ONE. 2011;6(11) doi: 10.1371/journal.pone.0027087.e27087
    1. Stickel F., Hampe J. Genetic determinants of alcoholic liver disease. Gut. 2012;61(1):150–159. doi: 10.1136/gutjnl-2011-301239.
    1. Valenti L., Dongiovanni P., Ginanni Corradini S., Burza M. A., Romeo S. PNPLA3 I148M variant and hepatocellular carcinoma: a common genetic variant for a rare disease. Digestive and Liver Disease. 2013;45(8):619–624. doi: 10.1016/j.dld.2012.12.006.
    1. Trépo E., Nahon P., Bontempi G., et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology. 2014;59(6):2170–2177. doi: 10.1002/hep.26767.
    1. Valenti L., Alisi A., Nobili V. I148M PNPLA3 variant and progressive liver disease: a new paradigm in hepatology. Hepatology. 2012;56(2):1883–1889. doi: 10.1002/hep.25830.
    1. Krawczyk M., Portincasa P., Lammert F. PNPLA3-associated steatohepatitis: toward a gene-based classification of fatty liver disease. Seminars in Liver Disease. 2013;33(4):369–379. doi: 10.1055/s-0033-1358525.
    1. Holmen O. L., Zhang H., Fan Y., et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nature Genetics. 2014;46(4):345–351. doi: 10.1038/ng.2926.
    1. Mahdessian H., Taxiarchis A., Popov S., et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(24):8913–8918. doi: 10.1073/pnas.1323785111.
    1. Chalasani N., Wilson L., Kleiner D. E., Cummings O. W., Brunt E. M., Ünalp A. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. Journal of Hepatology. 2008;48(5):829–834. doi: 10.1016/j.jhep.2008.01.016.
    1. Speliotes E. K., Yerges-Armstrong L. M., Wu J., et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genetics. 2011;7(3) doi: 10.1371/journal.pgen.1001324.e1001324
    1. Gorden A., Yang R., Yerges-Armstrong L. M., et al. Genetic variation at NCAN locus is associated with inflammation and fibrosis in non-alcoholic fatty liver disease in morbid obesity. Human Heredity. 2013;75(1):34–43. doi: 10.1159/000346195.
    1. Liu Y.-L., Reeves H. L., Burt A. D., et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nature Communications. 2014;5, article 4309 doi: 10.1038/ncomms5309.
    1. Cefalu A. B., Pirruccello J. P., Noto D., et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(8):2021–2025. doi: 10.1161/atvbaha.112.301101.
    1. Di Filippo M., Moulin P., Roy P., et al. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia. Journal of Hepatology. 2014;61:891–902.
    1. Marí M., Caballero F., Colell A., et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metabolism. 2006;4(3):185–198. doi: 10.1016/j.cmet.2006.07.006.
    1. Musso G., Gambino R., Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research. 2013;52(1):175–191. doi: 10.1016/j.plipres.2012.11.002.
    1. Morita T. Heme oxygenase and atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(9):1786–1795. doi: 10.1161/01.ATV.0000178169.95781.49.
    1. Petta S., Miele L., Bugianesi E., et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease. PLoS ONE. 2014;9(2) doi: 10.1371/journal.pone.0087523.e87523
    1. Beer N. L., Tribble N. D., McCulloch L. J., et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Human Molecular Genetics. 2009;18(21):4081–4088. doi: 10.1093/hmg/ddp357.
    1. Santoro N., Zhang C. K., Zhao H., et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology. 2012;55(3):781–789. doi: 10.1002/hep.24806.
    1. Valenti L., Alisi A., Nobili V. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms. Hepatology. 2012;55(3):661–663. doi: 10.1002/hep.25617.
    1. Acton R. T., Barton J. C., Passmore L. V., et al. Relationships of serum ferritin, transferrin saturation, and HFE mutations and self-reported diabetes in the hemochromatosis and iron overload screening (HEIRS) study. Diabetes Care. 2006;29(9):2084–2089. doi: 10.2337/dc05-1592.
    1. Dongiovanni P., Rametta R., Fracanzani A. L., et al. Lack of association between peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with non-alcoholic fatty liver disease: a case control study. BMC Gastroenterology. 2010;10, article 102 doi: 10.1186/1471-230x-10-102.
    1. Dongiovanni P., Valenti L. Peroxisome proliferator-activated receptor genetic polymorphisms and nonalcoholic fatty liver disease: any role in disease susceptibility? PPAR Research. 2013;2013:8. doi: 10.1155/2013/452061.452061
    1. Belfort R., Harrison S. A., Brown K., et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. The New England Journal of Medicine. 2006;355(22):2297–2307. doi: 10.1056/nejmoa060326.
    1. Li J. H., Lao X. Q., Tillmann H. L., et al. Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection. Hepatology. 2010;51(6):1904–1911. doi: 10.1002/hep.23592.
    1. Tönjes A., Scholz M., Loeffler M., Stumvoll M. Association of Pro12Ala polymorphism in peroxisome proliferator-activated receptor γ with pre-diabetic phenotypes: meta-analysis of 57 studies on nondiabetic individuals. Diabetes Care. 2006;29(11):2489–2497. doi: 10.2337/dc06-0513.
    1. Kumari M., Schoiswohl G., Chitraju C., et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metabolism. 2012;15(5):691–702. doi: 10.1016/j.cmet.2012.04.008.
    1. Olivieri O., Martinelli N., Sandri M., et al. Apolipoprotein C-III, n-3 polyunsaturated fatty acids, and “insulin-resistant” T-455C APOC3 gene polymorphism in heart disease patients: example of gene-diet interaction. Clinical Chemistry. 2005;51(2):360–367. doi: 10.1373/clinchem.2004.040477.
    1. Pollin T. I., Damcott C. M., Shen H., et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;322(5908):1702–1705. doi: 10.1126/science.1161524.
    1. Gattu S., Becker E. M., Koo J. Y. M. A rare case of non-Hodgkins B-cell lymphoma in a psoriatic patient: a case report and literature review. Journal of Drugs in Dermatology. 2010;9(10):1277–1281.
    1. Hirsch D., Stahl A., Lodish H. F. A family of fatty acid transporters conserved from mycobacterium to man. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(15):8625–8629. doi: 10.1073/pnas.95.15.8625.
    1. Steinberg S. J., Mihalik S. J., Kim D. G., Cuebas D. A., Watkins P. A. The human liver-specific homolog of very long-chain acyl-CoA synthetase is cholate: CoA ligase. The Journal of Biological Chemistry. 2000;275(21):15605–15608. doi: 10.1074/jbc.c000015200.
    1. Hubbard B., Doege H., Punreddy S., et al. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology. 2006;130(4):1259–1269. doi: 10.1053/j.gastro.2006.02.012.
    1. Doege H., Grimm D., Falcon A., et al. Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. The Journal of Biological Chemistry. 2008;283(32):22186–22192. doi: 10.1074/jbc.m803510200.
    1. Auinger A., Valenti L., Pfeuffer M., et al. A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis. Hormone and Metabolic Research. 2010;42(12):854–859. doi: 10.1055/s-0030-1267186.
    1. Fares R., Petta S., Lombardi R., et al. The UCP2 -866 G>A promoter region polymorphism is associated with nonalcoholic steatohepatitis. Liver International. 2014 doi: 10.1111/liv.12707.
    1. Feldstein A. E., Werneburg N. W., Canbay A., et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology. 2004;40(1):185–194. doi: 10.1002/hep.20283.
    1. Petersen K. F., Dufour S., Hariri A., et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. New England Journal of Medicine. 2010;362(12):1082–1089. doi: 10.1056/NEJMoa0907295.
    1. Kozlitina J., Boerwinkle E., Cohen J. C., Hobbs H. H. Dissociation between APOC3 variants, hepatic triglyceride content and insulin resistance. Hepatology. 2011;53(2):467–474. doi: 10.1002/hep.24072.
    1. Valenti L., Nobili V., Al-Serri A., et al. The APOC3 T-455C and C-482T promoter region polymorphisms are not associated with the severity of liver damage independently of PNPLA3 I148M genotype in patients with nonalcoholic fatty liver. Journal of Hepatology. 2011;55(6):1409–1414. doi: 10.1016/j.jhep.2011.03.035.
    1. Petta S., Grimaudo S., Cammà C., et al. IL28B and PNPLA3 polymorphisms affect histological liver damage in patients with non-alcoholic fatty liver disease. Journal of Hepatology. 2012;56(6):1356–1362. doi: 10.1016/j.jhep.2012.01.007.
    1. Salomone F., li Volti G., Rosso C., Grosso G., Bugianesi E. Unconjugated bilirubin, a potent endogenous antioxidant, is decreased in patients with non-alcoholic steatohepatitis and advanced fibrosis. Journal of Gastroenterology and Hepatology. 2013;28(7):1202–1208. doi: 10.1111/jgh.12155.
    1. Dongiovanni P., Fracanzani A. L., Fargion S., Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. Journal of Hepatology. 2011;55(4):920–932. doi: 10.1016/j.jhep.2011.05.008.

Source: PubMed

3
Abonner