Nutrigenetic Interactions Might Modulate the Antioxidant and Anti-Inflammatory Status in Mastiha-Supplemented Patients With NAFLD

Stavroula Kanoni, Satish Kumar, Charalampia Amerikanou, Mary Jo Kurth, Maria G Stathopoulou, Stephane Bourgeois, Christine Masson, Aimo Kannt, Lucia Cesarini, Maria-Spyridoula Kontoe, Maja Milanović, Francisco J Roig, Mirjana Beribaka, Jonica Campolo, Nuria Jiménez-Hernández, Nataša Milošević, Carlos Llorens, Ilias Smyrnioudis, M Pilar Francino, Nataša Milić, Andriana C Kaliora, Maria Giovanna Trivella, Mark W Ruddock, Milica Medić-Stojanoska, Amalia Gastaldelli, John Lamont, Panos Deloukas, George V Dedoussis, Sophie Visvikis-Siest, Stavroula Kanoni, Satish Kumar, Charalampia Amerikanou, Mary Jo Kurth, Maria G Stathopoulou, Stephane Bourgeois, Christine Masson, Aimo Kannt, Lucia Cesarini, Maria-Spyridoula Kontoe, Maja Milanović, Francisco J Roig, Mirjana Beribaka, Jonica Campolo, Nuria Jiménez-Hernández, Nataša Milošević, Carlos Llorens, Ilias Smyrnioudis, M Pilar Francino, Nataša Milić, Andriana C Kaliora, Maria Giovanna Trivella, Mark W Ruddock, Milica Medić-Stojanoska, Amalia Gastaldelli, John Lamont, Panos Deloukas, George V Dedoussis, Sophie Visvikis-Siest

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease with no therapeutic consensus. Oxidation and inflammation are hallmarks in the progression of this complex disease, which also involves interactions between the genetic background and the environment. Mastiha is a natural nutritional supplement known to possess antioxidant and anti-inflammatory properties. This study investigated how a 6-month Mastiha supplementation (2.1 g/day) could impact the antioxidant and inflammatory status of patients with NAFLD, and whether genetic variants significantly mediate these effects. We recruited 98 patients with obesity (BMI ≥ 30 kg/m2) and NAFLD and randomly allocated them to either the Mastiha or the placebo group for 6 months. The anti-oxidative and inflammatory status was assessed at baseline and post-treatment. Genome-wide genetic data was also obtained from all participants, to investigate gene-by-Mastiha interactions. NAFLD patients with severe obesity (BMI > 35kg/m2) taking the Mastiha had significantly higher total antioxidant status (TAS) compared to the corresponding placebo group (P value=0.008). We did not observe any other significant change in the investigated biomarkers as a result of Mastiha supplementation alone. We identified several novel gene-by-Mastiha interaction associations with levels of cytokines and antioxidant biomarkers. Some of the identified genetic loci are implicated in the pathological pathways of NAFLD, including the lanosterol synthase gene (LSS) associated with glutathione peroxidase activity (Gpx) levels, the mitochondrial pyruvate carrier-1 gene (MPC1) and the sphingolipid transporter-1 gene (SPNS1) associated with hemoglobin levels, the transforming growth factor-beta-induced gene (TGFBI) and the micro-RNA 129-1 (MIR129-1) associated with IL-6 and the granzyme B gene (GZMB) associated with IL-10 levels. Within the MAST4HEALTH randomized clinical trial (NCT03135873, www.clinicaltrials.gov) Mastiha supplementation improved the TAS levels among NAFLD patients with severe obesity. We identified several novel genome-wide significant nutrigenetic interactions, influencing the antioxidant and inflammatory status in NAFLD.

Clinical trial registration: ClinicalTrials.gov, identifier NCT03135873.

Keywords: MAST4HEALTH; Mastiha; inflammation; non-alcoholic fatty liver disease; nutrigenetics; oxidative stress; randomized clinical trial.

Conflict of interest statement

Authors MK, MR, and JL were employed by the company Randox Laboratories Ltd (RANDOX), author AK was employed by the company Fraunhofer Institute of Translational Medicine and Pharmacology, author IS was employed by the company Chios Mastic Gum Growers Association, and authors FR and CL were employed by the company Biotechvana. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kanoni, Kumar, Amerikanou, Kurth, Stathopoulou, Bourgeois, Masson, Kannt, Cesarini, Kontoe, Milanović, Roig, Beribaka, Campolo, Jiménez-Hernández, Milošević, Llorens, Smyrnioudis, Francino, Milić, Kaliora, Trivella, Ruddock, Medić-Stojanoska, Gastaldelli, Lamont, Deloukas, Dedoussis and Visvikis-Siest.

Figures

Figure 1
Figure 1
Differences in adjusted means for post-treatment TAS, between the Mastiha and placebo groups, stratified by BMI category. Adjustments were performed for baseline levels of TAS, age, sex and center.
Figure 2
Figure 2
Boxplots of selected post-treatment levels (adjusted for the baseline levels, age, sex, center and the first 5 genetic principal components) between the Mastiha and placebo groups, stratified by genotype, for the significant gene-by-Mastiha interactions (outliers are presented as dots: (A) Gpx levels by the rs12004915 genotypes, (B) HB by rs12211694, (C) IL-6 by rs4731418, (D) IL-6 by rs9651127, (E) TNF-α by rs10928182 and (F) IL-10 by rs8021058.

References

    1. Carr RM, Oranu A, Khungar V. Nonalcoholic Fatty Liver Disease: Pathophysiology and Management. Gastroenterol Clin North Am (2016) 45(4):639–52. 10.1016/j.gtc.2016.07.003
    1. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat Med (2018) 24(7):908–22. 10.1038/s41591-018-0104-9
    1. Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, Smircic Duvnjak L, Duvnjak M. Adipokines and Proinflammatory Cytokines, the Key Mediators in the Pathogenesis of Nonalcoholic Fatty Liver Disease. World J Gastroenterol (2014) 20(48):18070–91. 10.3748/wjg.v20.i48.18070
    1. Jarvis H, Craig D, Barker R, Spiers G, Stow D, Anstee QM, et al. . Metabolic Risk Factors and Incident Advanced Liver Disease in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis of Population-Based Observational Studies. PloS Med (2020) 17(4):e1003100. 10.1371/journal.pmed.1003100
    1. Wang H, Mehal W, Nagy LE, Rotman Y. Immunological Mechanisms and Therapeutic Targets of Fatty Liver Diseases. Cell Mol Immunol (2021) 18(1):73–91. 10.1038/s41423-020-00579-3
    1. Asrih M, Jornayvaz FR. Inflammation as a Potential Link Between Nonalcoholic Fatty Liver Disease and Insulin Resistance. J Endocrinol (2013) 218(3):R25–36. 10.1530/JOE-13-0201
    1. Dallio M, Sangineto M, Romeo M, Villani R, Romano AD, Loguercio C, et al. . Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int J Mol Sci (2021) 22(1):436. 10.3390/ijms22010436
    1. L. European Association for the Study of the, D . European Association for the Study of and O. European Association for the Study of: EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J Hepatol (2016) 64(6):1388–402. 10.1016/j.jhep.2015.11.004
    1. Reddy AJ, George ES, Roberts SK, Tierney AC. Effect of Dietary Intervention, With or Without Co-Interventions, on Inflammatory Markers in Patients With Nonalcoholic Fatty Liver Disease: A Systematic Literature Review. Nutr Rev (2019) 77(11):765–86. 10.1093/nutrit/nuz029
    1. Bagherniya M, Nobili V, Blesso CN, Sahebkar A. Medicinal Plants and Bioactive Natural Compounds in the Treatment of Non-Alcoholic Fatty Liver Disease: A Clinical Review. Pharmacol Res (2018) 130:213–40. 10.1016/j.phrs.2017.12.020
    1. Yao H, Qiao YJ, Zhao YL, Tao XF, Xu LN, Yin LH, et al. . Herbal Medicines and Nonalcoholic Fatty Liver Disease. World J Gastroenterol (2016) 22(30):6890–905. 10.3748/wjg.v22.i30.6890
    1. Pachi VK, Mikropoulou EV, Gkiouvetidis P, Siafakas K, Argyropoulou A, Angelis A, et al. . Traditional Uses, Phytochemistry and Pharmacology of Chios Mastic Gum (Pistacia Lentiscus Var. Chia Anacardiaceae): A Rev J Ethnopharmacol (2020) 254:112485. 10.1016/j.jep.2019.112485
    1. Papada E, Kaliora AC. Antioxidant and Anti-Inflammatory Properties of Mastiha: A Review of Preclinical and Clinical Studies. Antioxid (Basel) (2019) 8(7):208. 10.3390/antiox8070208
    1. Kannt A, Papada E, Kammermeier C, D’Auria G, Jimenez-Hernandez N, Stephan M, et al. . Mastiha (Pistacia Lentiscus) Improves Gut Microbiota Diversity, Hepatic Steatosis, and Disease Activity in a Biopsy-Confirmed Mouse Model of Advanced Non-Alcoholic Steatohepatitis and Fibrosis. Mol Nutr Food Res (2019) 63(24):e1900927. 10.1002/mnfr.201900927
    1. Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci (2020) 21(8):2986. 10.3390/ijms21082986
    1. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, et al. . Genome-Wide Association Study Identifies Variants Associated With Histologic Features of Nonalcoholic Fatty Liver Disease. Gastroenterology (2010) 139(5):1567–76, 1576 e1-6. 10.1053/j.gastro.2010.07.057
    1. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. . Genome-Wide Association Analysis Identifies Variants Associated With Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits. PloS Genet (2011) 7(3):e1001324. 10.1371/journal.pgen.1001324
    1. Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, et al. . GWAS and Enrichment Analyses of Non-Alcoholic Fatty Liver Disease Identify New Trait-Associated Genes and Pathways Across Emerge Network. BMC Med (2019) 17(1):135. 10.1186/s12916-019-1364-z
    1. Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, Tiniakos D, et al. . Genome-Wide Association Study of Non-Alcoholic Fatty Liver and Steatohepatitis in a Histologically Characterised Cohort(). J Hepatol (2020) 73(3):505–15. 10.1016/j.jhep.2020.04.003
    1. Dongiovanni P, Valenti L. A Nutrigenomic Approach to Non-Alcoholic Fatty Liver Disease. Int J Mol Sci (2017) 18(7):1534. 10.3390/ijms18071534
    1. Miele L, Dall’armi V, Cefalo C, Nedovic B, Arzani D, Amore R, et al. . A Case-Control Study on the Effect of Metabolic Gene Polymorphisms, Nutrition, and Their Interaction on the Risk of Non-Alcoholic Fatty Liver Disease. Genes Nutr (2014) 9(2):383. 10.1007/s12263-013-0383-1
    1. Tryndyak VP, Marrone AK, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. Microrna Changes, Activation of Progenitor Cells and Severity of Liver Injury in Mice Induced by Choline and Folate Deficiency. J Nutr Biochem (2016) 28:83–90. 10.1016/j.jnutbio.2015.10.001
    1. Amerikanou C, Kanoni S, Kaliora AC, Barone A, Bjelan M, D’Auria G, et al. . Effect of Mastiha Supplementation on NAFLD: The MAST4HEALTH Randomised, Controlled Trial. Mol Nutr Food Res (2021) 10:e2001178. 10.1002/mnfr.202001178
    1. Pavlides M, Banerjee R, Tunnicliffe EM, Kelly C, Collier J, Wang LM, et al. . Multiparametric Magnetic Resonance Imaging for the Assessment of Non-Alcoholic Fatty Liver Disease Severity. Liver Int (2017) 37(7):1065–73. 10.1111/liv.13284
    1. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. . International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med Sci Sports Exerc (2003) 35(8):1381–95. 10.1249/01.MSS.0000078924.61453.FB
    1. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. . Next-Generation Genotype Imputation Service and Methods. Nat Genet (2016) 48(10):1284–7. 10.1038/ng.3656
    1. Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding Novel Genes by Testing G X E Interactions in a Genome-Wide Association Study. Genet Epidemiol (2013) 37(6):603–13. 10.1002/gepi.21748
    1. Pirgon O, Bilgin H, Cekmez F, Kurku H, Dundar BN. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents With Non-Alcoholic Fatty Liver Disease. J Clin Res Pediatr Endocrinol (2013) 5(1):33–9. 10.4274/Jcrpe.825
    1. Pan X, Chiwanda Kaminga A, Liu A, Wen SW, Chen J, Luo J. Chemokines in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Network Meta-Analysis. Front Immunol (2020) 11:1802. 10.3389/fimmu.2020.01802
    1. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interferon Cytokine Res (2009) 29(6):313–26. 10.1089/jir.2008.0027
    1. Silva IVG, de Figueiredo RC, Rios DRA. Effect of Different Classes of Antihypertensive Drugs on Endothelial Function and Inflammation. Int J Mol Sci (2019) 20(14):3458. 10.3390/ijms20143458
    1. Kurylowicz A, Kozniewski K. Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules (2020) 25(9):2224. 10.3390/molecules25092224
    1. Baker CH, Matsuda SP, Liu DR, Corey EJ. Molecular Cloning of the Human Gene Encoding Lanosterol Synthase From a Liver Cdna Library. Biochem Biophys Res Commun (1995) 213(1):154–60. 10.1006/bbrc.1995.2110
    1. Simonen P, Kotronen A, Hallikainen M, Sevastianova K, Makkonen J, Hakkarainen A, et al. . Cholesterol Synthesis is Increased and Absorption Decreased in Non-Alcoholic Fatty Liver Disease Independent of Obesity. J Hepatol (2011) 54(1):153–9. 10.1016/j.jhep.2010.05.037
    1. Razali N, Abdul Aziz A, Lim CY, Mat Junit S. Investigation Into the Effects of Antioxidant-Rich Extract of Tamarindus Indica Leaf on Antioxidant Enzyme Activities, Oxidative Stress and Gene Expression Profiles in Hepg2 Cells. PeerJ (2015) 3:e1292. 10.7717/peerj.1292
    1. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, et al. . Identification of Context-Dependent Expression Quantitative Trait Loci in Whole Blood. Nat Genet (2017) 49(1):139–45. 10.1038/ng.3737
    1. Juarez-Hernandez E, Chavez.-Tapia NCC, Brizuela-Alcantara D, Uribe M, H. Ramos-Ostos M, Nuno-Lambarri N. Association Between Serum Hemoglobin Levels and Non Alcoholic Fatty Liver Disease in a Mexican Population. Ann Hepatol (2018) 17(4):577–84. 10.5604/01.3001.0012.0920
    1. Akyuz U, Yesil A, Yilmaz Y. Characterization of Lean Patients With Nonalcoholic Fatty Liver Disease: Potential Role of High Hemoglobin Levels. Scand J Gastroenterol (2015) 50(3):341–6. 10.3109/00365521.2014.983160
    1. Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. . Unraveling the Polygenic Architecture of Complex Traits Using Blood Eqtl Metaanalysis. bioRxiv [Preprint] (2018) 447367. 10.1101/447367
    1. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. . Systematic Identification of Trans Eqtls as Putative Drivers of Known Disease Associations. Nat Genet (2013) 45(10):1238–43. 10.1038/ng.2756
    1. Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease Across the Lifespan. Biomolecules (2020) 10(8):1162. 10.3390/biom10081162
    1. Rauckhorst AJ, Gray LR, Sheldon RD, Fu X, Pewa AD, Feddersen CR, et al. . The Mitochondrial Pyruvate Carrier Mediates High Fat Diet-Induced Increases in Hepatic TCA Cycle Capacity. Mol Metab (2017) 6(11):1468–79. 10.1016/j.molmet.2017.09.002
    1. Simon J, Ouro A, Ala-Ibanibo L, Presa N, Delgado TC, Martinez-Chantar ML. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int J Mol Sci (2019) 21(1):40. 10.3390/ijms21010040
    1. G. T. Consortium . Human Genomics. the Genotype-Tissue Expression (Gtex) Pilot Analysis: Multitissue Gene Regulation in Humans. Science (2015) 348(6235):648–60. 10.1126/science.1262110
    1. Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A, Doll S, et al. . Plasma Proteome Profiling Discovers Novel Proteins Associated With Non-Alcoholic Fatty Liver Disease. Mol Syst Biol (2019) 15(3):e8793. 10.15252/msb.20188793
    1. Bartel DP. Micrornas: Genomics, Biogenesis, Mechanism, and Function. Cell (2004) 116(2):281–97. 10.1016/s0092-8674(04)00045-5
    1. Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. Mirna Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int J Mol Sci (2018) 19(12):3966. 10.3390/ijms19123966
    1. Pirola CJ, Fernandez Gianotti T, Castano GO, Mallardi P, San Martino J, Mora Gonzalez Lopez Ledesma M, et al. . Circulating Microrna Signature in Non-Alcoholic Fatty Liver Disease: From Serum Non-Coding Rnas to Liver Histology and Disease Pathogenesis. Gut (2015) 64(5):800–12. 10.1136/gutjnl-2014-306996
    1. Ye J, Lin Y, Yu Y, Sun D. Lncrna NEAT1/Microrna-129-5p/SOCS2 Axis Regulates Liver Fibrosis in Alcoholic Steatohepatitis. J Transl Med (2020) 18(1):445. 10.1186/s12967-020-02577-5
    1. Zhang Z, Wen H, Peng B, Weng J, Zeng F. Downregulated Microrna-129-5p by Long Non-Coding RNA NEAT1 Upregulates PEG3 Expression to Aggravate Non-Alcoholic Steatohepatitis. Front Genet (2021) 11:563265(1407):1407. 10.3389/fgene.2020.563265
    1. La Cava A. Leptin in Inflammation and Autoimmunity. Cytokine (2017) 98:51–8. 10.1016/j.cyto.2016.10.011
    1. Rotundo L, Persaud A, Feurdean M, Ahlawat S, Kim HS. The Association of Leptin With Severity of Non-Alcoholic Fatty Liver Disease: A Population-Based Study. Clin Mol Hepatol (2018) 24(4):392–401. 10.3350/cmh.2018.0011
    1. Zeglinski MR, Granville DJ. Granzymes in Cardiovascular Injury and Disease. Cell Signal (2020) 76:109804. 10.1016/j.cellsig.2020.109804
    1. Breuer DA, Pacheco MC, Washington MK, Montgomery SA, Hasty AH, Kennedy AJ. CD8(+) T Cells Regulate Liver Injury in Obesity-Related Nonalcoholic Fatty Liver Disease. Am J Physiol Gastrointest Liver Physiol (2020) 318(2):G211–24. 10.1152/ajpgi.00040.2019

Source: PubMed

3
Abonner