Acute Hemodynamic Effects of Simultaneous and Sequential Multi-Point Pacing in Heart Failure Patients With an Expected Higher Rate of Sub-response to Cardiac Resynchronization Therapy: Results of Multicenter SYNSEQ Study

Maciej Sterliński, Joanna Zakrzewska-Koperska, Aleksander Maciąg, Adam Sokal, Joaquin Osca-Asensi, Lingwei Wang, Vasiliki Spyropoulou, Baerbel Maus, Francesca Lemme, Osita Okafor, Berthold Stegemann, Richard Cornelussen, Francisco Leyva, Maciej Sterliński, Joanna Zakrzewska-Koperska, Aleksander Maciąg, Adam Sokal, Joaquin Osca-Asensi, Lingwei Wang, Vasiliki Spyropoulou, Baerbel Maus, Francesca Lemme, Osita Okafor, Berthold Stegemann, Richard Cornelussen, Francisco Leyva

Abstract

The aim of the SYNSEQ (Left Ventricular Synchronous vs. Sequential MultiSpot Pacing for CRT) study was to evaluate the acute hemodynamic response (AHR) of simultaneous (3P-MPP syn) or sequential (3P-MPP seq) multi-3-point-left-ventricular (LV) pacing vs. single point pacing (SPP) in a group of patients at risk of a suboptimal response to cardiac resynchronization therapy (CRT). Twenty five patients with myocardial scar or QRS ≤ 150 or the absence of LBBB (age: 66 ± 12 years, QRS: 159 ± 12 ms, NYHA class II/III, LVEF ≤ 35%) underwent acute hemodynamic assessment by LV + dP/dtmax with a variety of LV pacing configurations at an optimized AV delay. The change in LV + dP/dt max (%ΔLV + dP/dt max) with 3P-MPP syn (15.6%, 95% CI: 8.8%-22.5%) was neither statistically significantly different to 3P-MPP seq (11.8%, 95% CI: 7.6-16.0%) nor to SPP basal (11.5%, 95% CI:7.1-15.9%) or SPP mid (12.2%, 95% CI:7.9-16.5%), but higher than SPP apical (10.6%, 95% CI:5.3-15.9%, p = 0.03). AHR (defined as a %ΔLV + dP/dt max ≥ 10%) varied between pacing configurations: 36% (9/25) for SPP apical, 44% (11/25) for SPP basal, 54% (13/24) for SPP mid, 56% (14/25) for 3P-MPP syn and 48% (11/23) for 3P-MPP seq.Fifteen patients (15/25, 60%) had an AHR in at least one pacing configuration. AHR was observed in 10/13 (77%) patients with a LBBB but only in 5/12 (42%) patients with a non-LBBB (p = 0.11). To conclude, simultaneous or sequential multipoint pacing compared to single point pacing did not improve the acute hemodynamic effect in a suboptimal CRT response population.

Clinical trial registration: ClinicalTrials.gov, identifier: NCT02914457.

Keywords: acute hemodynamic effect; biventricular pacing; cardiac resynchronization therapy; heart failure; multipoint pacing; quadripolar lead for left ventricle pacing.

Conflict of interest statement

VS, FLem, and BS were employed by the company Medtronic Inc. BM and RC were an employee of Medtronic and holds Medtronic stocks. MS, AM, AS, and FLey they received fees from commercial companies. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Sterliński, Zakrzewska-Koperska, Maciąg, Sokal, Osca-Asensi, Wang, Spyropoulou, Maus, Lemme, Okafor, Stegemann, Cornelussen and Leyva.

Figures

Figure 1
Figure 1
Fluoro-images at AP, LAO 30° and RAO 30° displaying position of the different CRT leads. Note that in this case the vision wire administered through the lumen of the quadripolar was used to obtain true apical position. MPP was delivered on the vision wire, and on the distal and most proximal electrodes of the short bipole of the quadripolar lead.
Figure 2
Figure 2
SYNSEQ study flowchart.
Figure 3
Figure 3
Primary objective: % ΔLV + dPdtmax boxplot at best AV-delay. SPP, RV-LV Single-point pacing and MPP, RV-LV Multi-point pacing. MPPseq, Sequential MPP; MPPsyn, Synchronous (simultaneous) MPP; SPPbasal,mid,apical, SPP from base, mid, apical LV electrode. Solid line depicts the median value, and boxes are 25th and 75th percentile. Whiskers represent the most extreme data point within 1.5x interquartile range from the boxes. Diamonds represent mean value, and dots are outliers.
Figure 4
Figure 4
% change ΔLV + dPdtmax boxplot at best AV-delay in the subgroups LBBB and non-LBBB. SPP, RV-LV Single-point pacing and MPP, RV-LV Multi-point pacing. MPPseq, Sequential MPP; MPPsyn, Synchronous (simultaneous) MPP; SPPbasal,mid,apical, SPP from base, mid, apical LV electrode. Solid line depicts the median value, and boxes are 25th and 75th percentile. Whiskers represent the most extreme data point within 1.5x interquartile range from the boxes. Diamonds represent mean value, and dots are outliers.

References

    1. Leyva F, Nisam S, Auricchio A. 20 years of cardiac resynchronization therapy. J Am Coll Cardiol. (2014) 64:1047–58. 10.1016/j.jacc.2014.06.1178
    1. Forleo GB, Mantica M, Di Biase L, Panattoni G, Della Rocca DG, Papavasileiou LP, et al. . Clinical and procedural outcome of patients implanted with a quadripolar left ventricular lead: early results of a prospective multicenter study. Heart Rhythm. (2012) 9:1822–8. 10.1016/j.hrthm.2012.07.021
    1. Leyva F, Zegard A, Qiu T, Acquaye E, Ferrante G, Walton J, et al. . Cardiac resynchronization therapy using quadripolar versus non-quadripolar left ventricular leads programmed to biventricular pacing with single-site left ventricular pacing: impact on survival and heart failure hospitalization. J Am Heart Assoc. (2017) 6:e007026. 10.1161/JAHA.117.007026
    1. Behar JM, Bostock J, Zhu Li AP, Chin HM, Jubb S, Lent E, et al. . Cardiac Resynchronization therapy delivered via a multipolar left ventricular lead is associated with reduced mortality and elimination of phrenic nerve stimulation: long-term follow-up from a multicenter registry. J Cardiovasc Electrophysiol. (2015) 26:540–6. 10.1111/jce.12625
    1. Rinaldi CA, Kranig W, Leclercq C, Kacet S, Betts T, Bordachar P, et al. . Acute effects of multisite left ventricular pacing on mechanical dyssynchrony in patients receiving cardiac resynchronization therapy. J Card Fail. (2013) 19:731–8. 10.1016/j.cardfail.2013.10.003
    1. Pappone C, Calović ž, Vicedomini G, Cuko A, McSpadden LC, Ryu K, et al. . Multipoint left ventricular pacing improves acute hemodynamic response assessed with pressure-volume loops in cardiac resynchronization therapy patients. Heart Rhythm. (2014) 11:394–401. 10.1016/j.hrthm.2013.11.023
    1. Leyva F, Umar F, Taylor RJ, Steeds RP, Frenneaux MP. The clinical outcome of cardiac resynchronization therapy in post-surgical valvular cardiomyopathy. Europace. (2016) 18:732–8. 10.1093/europace/euv287
    1. Sterliński M, Sokal A, Lenarczyk R, Van Heuverswyn F, Rinaldi CA, Vanderheyden M, et al. . In heart failure patients with left bundle branch block single lead multispot left ventricular pacing does not improve acute hemodynamic response to conventional biventricular pacing. A multicenter prospective, interventional, non-randomized study. PLoS ONE. (2016) 11:e0154024. 10.1371/journal.pone.0154024
    1. Pappone C, Calović Ž, Vicedomini G, Cuko A, McSpadden LC, Ryu K, et al. . Multipoint left ventricular pacing in a single coronary sinus branch improves mid-term echocardiographic and clinical response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol. (2015) 26:58–63. 10.1111/jce.12513
    1. Leclercq C, Burri H, Curnis A, Delnoy PP, Rinaldi CA, Sperzel J, et al. . Cardiac resynchronization therapy non-responder to responder conversion rate in the more response to cardiac resynchronization therapy with MultiPoint Pacing (MORE-CRT MPP) study: results from Phase I. Eur Heart J. (2019) 40:2979–87. 10.1093/eurheartj/ehz109
    1. Vanagt WY, Prinzen FW, Delhaas T. Reversal of pacing-induced heart failure by left ventricular apical pacing. N Engl J Med. (2007) 357:2637–8. 10.1056/NEJMc072317
    1. Leyva F, Zegard A, Taylor RJ, Foley PWX, Umar F, Patel K, et al. . Long-term outcomes of cardiac resynchronization therapy using apical versus nonapical left ventricular pacing. J Am Heart Assoc. (2018) 7:e008508. 10.1161/JAHA.117.008508
    1. Rüssel IK, Götte MJ, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum AC. Left ventricular torsion: an expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc Imaging. (2009) 2:648–55. 10.1016/j.jcmg.2009.03.001
    1. Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex–an early predictor of cardiovascular outcome? Nat Rev Cardiol. (2014) 11:545–53. 10.1038/nrcardio.2014.75
    1. Leyva F, Zegard A, Umar F, Taylor RJ, Acquaye E, Gubran C, et al. . Long-term clinical outcomes of cardiac resynchronization therapy with or without defibrillation: impact of the aetiology of cardiomyopathy. Europace. (2018) 20:1804–12. 10.1093/europace/eux357
    1. Świerżyńska E, Mitkowski P, Zakrzewska-Koperska J, Orȩziak A, Baranowski R, Bilińska M, Sterliński M. Spatial separation of left and right ventricular leads adjusted to the left ventricular end-diastolic dimension does not affect the change of the paced QRS complex duration in resynchronization therapy. Kardiol Pol. (2020) 78:1159–61. 10.33963/KP.15595
    1. Ginks MR, Shetty AK, Lambiase PD, Duckett SG, Bostock J, Peacock JL, et al. . Benefits of endocardial and multisite pacing are dependent on the type of left ventricular electric activation pattern and presence of ischemic heart disease: insights from electroanatomic mapping. Circ Arrhythm Electrophysiol. (2012) 5:889–97. 10.1161/CIRCEP.111.967505
    1. Hussain MA, Bhamra-Ariza P, Jacques A, Wilkinson P, Odemuyiwa O, Fluck D, et al. . Benefits of a quadripolar left ventricular lead in patients undergoing cardiac resynchronization therapy with underlying myocardial scar. Pacing Clin Electrophysiol. (2013) 36:e45–47. 10.1111/j.1540-8159.2011.03065.x
    1. Bordachar P, Ploux S, Ritter P. Three left ventricular leads required for improved haemodynamic and clinical status of a patient with very severe heart failure and a narrow QRS duration. Europace. (2011) 13:439. 10.1093/europace/euq370
    1. Henin M, Ragy H, Mannion J, David S, Refila B, Boles U. Indications of cardiac resynchronization in non-left bundle branch block: clinical review of available evidence. Cardiol Res. (2020) 11:1–8. 10.14740/cr989
    1. Sohal M, Hamid S, Perego G, Della Bella P, Adhya S, Paisey J, et al. . A multicenter prospective randomized controlled trial of cardiac resynchronization therapy guided by invasive dP/dt. Heart Rhythm. (2021) 2:19–27. 10.1016/j.hroo.2021.01.005
    1. Strauss DG, Selvester RH. The QRS complex–a biomarker that “images” the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. J Electrocardiol. (2009) 42:85–96. 10.1016/j.jelectrocard.2008.07.011
    1. McCrohon JA, Moon JCC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJS, et al. . Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. (2003) 108:54–9. 10.1161/01.CIR.0000078641.19365.4C
    1. Stegemann B, Francis DP. Atrioventricular and interventricular delay optimization and response quantification in biventricular pacing: arrival of reliable clinical algorithms and research protocols, and how to distinguish them from unreliable counterparts. Europace. (2012) 14:1679–83. 10.1093/europace/eus242
    1. Whinnett ZI, Davies JE, Willson K, Manisty CH, Chow AW, Foale RA, et al. . Haemodynamic effects of changes in atrioventricular and interventricular delay in cardiac resynchronisation therapy show a consistent pattern: analysis of shape, magnitude and relative importance of atrioventricular and interventricular delay. Heart. (2006) 92:1628–34. 10.1136/hrt.2005.080721
    1. Whinnett ZI, Francis DP, Denis A, Willson K, Pascale P, van Geldorp I, et al. . Comparison of different invasive hemodynamic methods for AV delay optimization in patients with cardiac resynchronization therapy: implications for clinical trial design and clinical practice. Int J Cardiol. (2013) 168:2228–37. 10.1016/j.ijcard.2013.01.216
    1. Mullens W, Nijst P. Leadless left ventricular pacing: another step toward improved CRT response. J Am Coll Cardiol. (2017) 69:2130–3. 10.1016/j.jacc.2017.03.534
    1. Mullens W, Auricchio A, Martens P, Witte K, Cowie MR, Delgado V, et al. . Optimized implementation of cardiac resynchronization therapy: a call for action for referral and optimization of care: a joint position statement from the Heart Failure Association (HFA), European Heart Rhythm Association (EHRA), and European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology. Eur J Heart Fail. (2020) 22:2349–69. 10.1002/ejhf.2046
    1. Puvrez A, Duchenne J, Gorcsan J, Marwick TH, Smiseth OA, Voigt JU. Why mechanical dyssynchrony remains relevant to cardiac resynchronization therapy. Letter regarding the article 'Optimized implementation of cardiac resynchronization therapy: a call for action for referral and optimization of care: a joint position statement from the Heart Failure Association (HFA), European Heart Rhythm Association (EHRA), and European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology'. Eur J Heart Fail. (2021) 23:843–4. 10.1002/ejhf.2150
    1. Shun-Shin MJ, Miyazawa AA, Keene D, Sterliński M, Sokal A, Van Heuverswyn F, et al. . How to deliver personalized cardiac resynchronization therapy through the precise measurement of the acute hemodynamic response: Insights from the iSpot trial. J Cardiovasc Electrophysiol. (2019) 30:1610–9. 10.1111/jce.14001
    1. Duckett SG, Ginks M, Shetty AK, Bostock J, Gill JS, Hamid S, et al. . Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol. (2011) 58:1128–36. 10.1016/j.jacc.2011.04.042
    1. van Everdingen WM, Zweerink A, Cramer MJ, Doevendans PA, Nguyên UC, van Rossum AC, et al. . Can we use the intrinsic left ventricular delay (QLV) to optimize the pacing configuration for cardiac resynchronization therapy with a quadripolar left ventricular lead? Circ Arrhythm Electrophysiol. (2018) 11:e005912. 10.1161/CIRCEP.117.005912
    1. Thibault B, Dubuc M, Khairy P, Guerra PG, Macle L, Rivard L, et al. . Acute haemodynamic comparison of multisite and biventricular pacing with a quadripolar left ventricular lead. Europace. (2013) 15:984–91. 10.1093/europace/eus435
    1. Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation. (1970) 41:899–912. 10.1161/01.CIR.41.6.899
    1. Pluijmert M, Bovendeerd PH, Lumens J, Vernooy K, Prinzen FW, Delhaas T. New insights from a computational model on the relation between pacing site and CRT response. Europace. (2016) 18(suppl 4):iv94–103. 10.1093/europace/euw355
    1. van Deursen C, van Geldorp IE, Rademakers LM, van Hunnik A, Kuiper M, Klersy C, et al. . Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol. (2009) 2:580–7. 10.1161/CIRCEP.108.846022
    1. Umar F, Taylor RJ, Stegemann B, Marshall H, Flannigan S, Lencioni M, et al. . Haemodynamic effects of cardiac resynchronization therapy using single-vein, three-pole, multipoint left ventricular pacing in patients with ischaemic cardiomyopathy and a left ventricular free wall scar: the MAESTRO study. Europace. (2016) 18:1227–34. 10.1093/europace/euv396
    1. Kandala J, Upadhyay GA, Altman RK, Bose A, Heist EK, Mela T, et al. . Electrical delay in apically positioned left ventricular leads and clinical outcome after cardiac resynchronization therapy. J Cardiovasc Electrophysiol. (2013) 24:182–7. 10.1111/j.1540-8167.2012.02428.x
    1. Lercher P, Lunati M, Rordorf R, Landolina M, Badie N, Qu F, et al. . Long-term reverse remodeling by cardiac resynchronization therapy with MultiPoint Pacing: a feasibility study of noninvasive hemodynamics-guided device programming. Heart Rhythm. (2018) 15:1766–74. 10.1016/j.hrthm.2018.06.032
    1. Gold MR, Thebault C, Linde C, Abraham WT, Gerritse B, Ghio S, et al. . Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) study. Circulation. (2012) 126:822–9. 10.1161/CIRCULATIONAHA.112.097709
    1. Zareba W, Klein H, Cygankiewicz I, Hall WJ, McNitt S, Brown M, et al. . Effectiveness of cardiac resynchronization therapy by QRS morphology in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT). Circulation. (2011) 123:1061–72. 10.1161/CIRCULATIONAHA.110.960898
    1. Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, et al. . 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. (2021) 42:3427–520. 10.1093/eurheartj/ehab364
    1. Vijayaraman P, Herweg B, Ellenbogen KA, Gajek J. His-optimized cardiac resynchronization therapy to maximize electrical resynchronization: a feasibility study. Circ Arrhythm Electrophysiol. (2019) 12:e006934. 10.1161/CIRCEP.118.006934
    1. Zweerink A, Zubarev S, Bakelants E, Potyagaylo D, Stettler C, Chmelevsky M, et al. . His-optimized cardiac resynchronization therapy with ventricular fusion pacing for electrical resynchronization in heart failure. JACC Clin Electrophysiol. (2021) 7:881–92. 10.1016/j.jacep.2020.11.029
    1. Jastrzebski M, Moskal P, Huybrechts W, Curila K, Sreekumar P, Rademakers LM, et al. . Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): Results from an international LBBAP collaborative study group. Heart Rhythm. (2022) 19:13–21. 10.1016/j.hrthm.2021.07.057
    1. Senes J, Mascia G, Bottoni N, Oddone D, Donateo P, Grimaldi T, et al. . Is His-optimized superior to conventional cardiac resynchronization therapy in improving heart failure? Results from a propensity-matched study. Pacing Clin Electrophysiol. (2021) 44:1532–9. 10.1111/pace.14336
    1. Cleland JG, Abraham WT, Linde C, Gold MR, Young JB, Claude Daubert J, et al. . An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart J. (2013) 34:3547–56. 10.1093/eurheartj/eht290
    1. Engels EB, Mafi-Rad M, van Stipdonk AM, Vernooy K, Prinzen FW. Why QRS Duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res. (2016) 9:257–65. 10.1007/s12265-016-9693-1
    1. Gold MR, Birgersdotter-Green U, Singh JP, Ellenbogen KA, Yu Y, Meyer TE, et al. . The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. (2011) 32:2516–24. 10.1093/eurheartj/ehr329
    1. Suzuki H, Shimano M, Yoshida Y, Inden Y, Muramatsu T, Tsuji Y, et al. . Maximum derivative of left ventricular pressure predicts cardiac mortality after cardiac resynchronization therapy. Clin Cardiol. (2010) 33:E18–23. 10.1002/clc.20683

Source: PubMed

3
Abonner