The role of the amygdala in the perception of positive emotions: an "intensity detector"

Louise Bonnet, Alexandre Comte, Laurent Tatu, Jean-Louis Millot, Thierry Moulin, Elisabeth Medeiros de Bustos, Louise Bonnet, Alexandre Comte, Laurent Tatu, Jean-Louis Millot, Thierry Moulin, Elisabeth Medeiros de Bustos

Abstract

The specific role of the amygdala remains controversial even though the development of functional imaging techniques has established its implication in the emotional process. The aim of this study was to highlight the sensitivity of the amygdala to emotional intensity (arousal). We conducted an analysis of the modulation of amygdala activation according to variation in emotional intensity via an fMRI event-related protocol. Monitoring of electrodermal activity, a marker of psychophysiological emotional perception and a reflection of the activation of the autonomic nervous system, was carried out concurrently. Eighteen subjects (10 men; aged from 22 to 29 years) looked at emotionally positive photographs. We demonstrated that the left and right amygdalae were sensitive to changes in emotional intensity, activating more in response to stimuli with higher intensity. Furthermore, electrodermal responses were more frequent for the most intense stimuli, demonstrating the concomitant activation of the autonomic nervous system. These results highlight the sensitivity of the amygdala to the intensity of positively valenced visual stimuli, and in conjunction with results in the literature on negative emotions, reinforce the role of the amygdala in the perception of intensity.

Keywords: IAPS; amygdala; electrodermal response; emotion; emotional intensity; fMRI.

Figures

Figure 1
Figure 1
(A) Distribution of the mean intensity ratings by our subjects for each of the 75 selected IAPS pictures against the IAPS norms of intensity. R, correlation coefficient (Pearson test, p < 0.001). (B) Distribution of the mean intensity ratings by our subjects for each of the 75 selected IAPS pictures against the IAPS norms of valence. Dashed lines represent the mean valence (m = 5.9) and the mean ± 1.96 SD (4.94 and 6.87). Blue (or respectively red/green) points form the low (or respectively medium/high) intensity groups. Points with a black edge represent the means of the sub-groups. Error bars are the standard error of the mean.
Figure 2
Figure 2
Bold curves as well as mean beta weight calculated from 18 subjects by image group in four regions of interest: left and right amygdalae, right pulvinar, and the medial thalami and hypothalamus complex. Group 1 is the image set with the lowest intensity, and Group 3 the image set with the highest intensity (Group 2 is an intermediate intensity image set). Regions of interest were obtained from the contrast Group 3 minus Group 1 after a statistical threshold of q(FDR) < 0.05 corrected for multiple comparisons. Error bars represent the standard error of the mean (± s.e.m.) * indicates a <0.05 p-value.
Figure 3
Figure 3
(A) Magnitudes and frequencies of the SCRs during viewing of stimuli in the first session inside the scanner. There was a statistical difference between groups of low and moderate intensity compared to the group of high intensity in terms of magnitude and frequency of SCRs. (B) Magnitudes and frequencies of the SCR during the viewing of the stimuli outside the scanner, in the second session. There was no statistical difference between the magnitudes of the 3 groups (p = 0.28). There was a statistical difference in frequencies of SCRs between groups of low and moderate intensity compared to the group of high intensity. *indicates a <0.005 p-value.

References

    1. Anders S., Eippert F., Weiskopf N., Veit R. (2008). The human amygdala is sensitive to the valence of pictures and sounds irrespective of arousal: an fMRI study. Soc. Cogn. Affect. Neurosci. 3, 233–243. 10.1093/scan/nsn017
    1. Anders S., Lotze M., Erb M., Grodd W., Birbaumer N. (2004). Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum. Brain Mapp. 23, 200–209. 10.1002/hbm.20048
    1. Anderson A. K., Christoff K., Panitz D., De Rosa E., Gabrieli J. D. E. (2003a). Neural correlates of the automatic processing of threat facial signals. J. Neurosci. 23, 5627–5633.
    1. Anderson A. K., Christoff K., Stappen I., Panitz D., Ghahremani D. G., Glover G. (2003b). Dissociated neural representations of intensity and valence in human olfaction. Nat. Neurosci. 6, 196–202. 10.1038/nn1001
    1. Anderson A. K., Sobel N. (2003). Dissociating intensity from valence as sensory inputs to emotion. Neuron 39, 581–583. 10.1016/S0896-6273(03)00504-X
    1. Baas D., Aleman A., Kahn R. S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res. Rev. 45, 96–103. 10.1016/j.brainresrev.2004.02.004
    1. Ball T., Derix J., Wentlandt J., Wieckhorst B., Speck O., Schulze-Bonhage A. (2009). Anatomical specificity of functional amygdala imaging of responses to stimuli with positive and negative emotional valence. J. Neurosci. Methods 180, 57–70. 10.1016/j.jneumeth.2009.02.022
    1. Belova M. A., Paton J. J., Morrison S. E., Salzman C. D. (2007). Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984. 10.1016/j.neuron.2007.08.004
    1. Boynton G. M., Engel S. A., Glover G. H., Heeger D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221.
    1. Bradley M. M., Lang P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59. 10.1016/0005-7916(94)90063-9
    1. Breska A., Maoz K., Ben-Shakhar G. (2011). Interstimulus intervals for skin conductance response measurement. Psychophysiology 48, 437–440. 10.1111/j.1469-8986.2010.01084.x
    1. Buchsbaum M. S., Buchsbaum B. R., Chokron S., Tang C., Wei T.-C., Byne W. (2006). Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci. Lett. 404, 282–287. 10.1016/j.neulet.2006.05.063
    1. Canli T., Zhao Z., Brewer J., Gabrieli J. D., Cahill L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. J. Neurosci. 20:RC99
    1. Costa V. D., Lang P. J., Sabatinelli D., Versace F., Bradley M. M. (2010). Emotional imagery: assessing pleasure and arousal in the brain's reward circuitry. Hum. Brain Mapp. 31, 1446–1457. 10.1002/hbm.20948
    1. Costafreda S. G., Brammer M. J., David A. S., Fu C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: a meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 58, 57–70. 10.1016/j.brainresrev.2007.10.012
    1. Cunningham W. A., Kirkland T. (2014). The joyful, yet balanced, amygdala: moderated responses to positive but not negative stimuli in trait happiness. Soc. Cogn. Affect. Neurosci. 9, 760–766. 10.1093/scan/nst045
    1. Cunningham W. A., Raye C. L., Johnson M. K. (2004). Implicit and explicit evaluation: fMRI correlates of valence, emotional intensity, and control in the processing of attitudes. J. Cogn. Neurosci. 16, 1717–1729. 10.1162/0898929042947919
    1. Dawson M. E., Schell A. M., Filion D. L. (2007). The electrodermal system, in Handbook of Psychophysiology, eds Berntson G. G., Cacioppo J. T., Tassinary L. G. (Cambridge University Press; ), 157–181.
    1. Dolcos F., LaBar K. S., Cabeza R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: an event-related fMRI study. Neuroimage 23, 64–74. 10.1016/j.neuroimage.2004.05.015
    1. Fowles D. C., Christie M. J., Edelberg R., Grings W. W., Lykken D. T., Venables P. H. (1981). Committee report. Publication recommendations for electrodermal measurements. Psychophysiology 18, 232–239. 10.1111/j.1469-8986.1981.tb03024.x
    1. Garavan H., Pendergrass J. C., Ross T. J., Stein E. A., Risinger R. C. (2001). Amygdala response to both positively and negatively valenced stimuli. Neuroreport 12, 2779–2783. 10.1097/00001756-200108280-00036
    1. Gläscher J., Adolphs R. (2003). Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. J. Neurosci. 23, 10274–10282.
    1. Goebel R., Esposito F., Formisano E. (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum. Brain Mapp. 27, 392–401. 10.1002/hbm.20249
    1. Hariri A. R., Mattay V. S., Tessitore A., Fera F., Weinberger D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biol. Psychiatry 53, 494–501. 10.1016/S0006-3223(02)01786-9
    1. Keightley M. L., Winocur G., Graham S. J., Mayberg H. S., Hevenor S. J., Grady C. L. (2003). An fMRI study investigating cognitive modulation of brain regions associated with emotional processing of visual stimuli. Neuropsychologia 41, 585–596. 10.1016/S0028-3932(02)00199-9
    1. Kim M. J., Loucks R. A., Palmer A. L., Brown A. C., Solomon K. M., Marchante A. N. (2011). The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav. Brain Res. 223, 403–410. 10.1016/j.bbr.2011.04.025
    1. Kreibig S. D. (2010). Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84, 394–421. 10.1016/j.biopsycho.2010.03.010
    1. Lagopoulos J., Malhi G. S., Shnier R. C. (2005). A fiber-optic system for recording skin conductance in the MRI scanner. Behav. Res. Methods 37, 657–664. 10.3758/BF03192737
    1. Lalumiere R. T. (2014). Optogenetic dissection of amygdala functioning. Front. Behav. Neurosci. 8:107. 10.3389/fnbeh.2014.00107
    1. Lane R. D., Chua P. M., Dolan R. J. (1999). Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37, 989–997. 10.1016/S0028-3932(99)00017-2
    1. Lane R. D., Reiman E. M., Bradley M. M., Lang P. J., Ahern G. L., Davidson R. J. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35, 1437–1444. 10.1016/S0028-3932(97)00070-5
    1. Lang P. J., Bradley M. M., Cuthbert B. N. (2008). International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. Technical Report A-8. Retrieved from Gainesville, FL.
    1. Lang P. J., Greenwald M. K., Bradley M. M., Hamm A. O. (1993). Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273. 10.1111/j.1469-8986.1993.tb03352.x
    1. LeDoux J. (2003). The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol. 23, 727–738. 10.1023/A:1025048802629
    1. Lewis P., Critchley H., Rotshtein P., Dolan R. (2007). Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748. 10.1093/cercor/bhk024
    1. Lim C. L., Rennie C., Barry R. J., Bahramali H., Lazzaro I., Manor B. (1997). Decomposing skin conductance into tonic and phasic components. Int. J. Psychophysiol. 25, 97–109. 10.1016/S0167-8760(96)00713-1
    1. Morris J. S., Frith C. D., Perrett D. I., Rowland D., Young A. W., Calder A. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815.
    1. Morrison S. E., Salzman C. D. (2010). Re-valuing the amygdala. Curr. Opin. Neurobiol. 20, 221–230. 10.1016/j.conb.2010.02.007
    1. Murphy F. C., Nimmo-Smith I., Lawrence A. D. (2003). Functional neuroanatomy of emotions: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 207–233. 10.3758/CABN.3.3.207
    1. Paradiso S., Johnson D. L., Andreasen N. C., O'Leary D. S., Watkins G. L., Ponto L. L. (1999). Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am. J. Psychiatry 156, 1618–1629. 10.1176/ajp.156.10.1618
    1. Pessoa L., Adolphs R. (2010). Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat. Rev. Neurosci. 11, 773–783. 10.1038/nrn2920
    1. Phan K. L., Taylor S. F., Welsh R. C., Decker L. R., Noll D. C., Nichols T. E. (2003). Activation of the medial prefrontal cortex and extended amygdala by individual ratings of emotional arousal: a fMRI study. Biol. Psychiatry 53, 211–215. 10.1016/S0006-3223(02)01485-3
    1. Phan K. L., Taylor S. F., Welsh R. C., Ho S.-H., Britton J. C., Liberzon I. (2004). Neural correlates of individual ratings of emotional salience: a trial-related fMRI study. Neuroimage 21, 768–780. 10.1016/j.neuroimage.2003.09.072
    1. Pribram K. H., McGuinness D. (1975). Arousal, activation, and effort in the control of attention. Psychol. Rev. 82, 116–149. 10.1037/h0076780
    1. Purves D., Jeannerod M., Coquery J. M. (2005). Neurosciences, 3rd Edn. Sunderland, MA: De Boeck Superieur; Sinauer Associates Inc.
    1. Sabatinelli D., Bradley M. M., Fitzsimmons J. R., Lang P. J. (2005). Parallel amygdala and inferotemporal activation reflect emotional intensity and fear relevance. Neuroimage 24, 1265–1270. 10.1016/j.neuroimage.2004.12.015
    1. Sabatinelli D., Fortune E. E., Li Q., Siddiqui A., Krafft C., Oliver W. T. (2011). Emotional perception: meta-analyses of face and natural scene processing. Neuroimage 54, 2524–2533. 10.1016/j.neuroimage.2010.10.011
    1. Sander D., Grafman J., Zalla T. (2003). The human amygdala: an evolved system for relevance detection. Rev. Neurosci. 14, 303–316. 10.1515/REVNEURO.2003.14.4.303
    1. Schell A. M., Dawson M. E., Nuechterlein K. H., Subotnik K. L., Ventura J. (2002). The temporal stability of electrodermal variables over a one-year period in patients with recent-onset schizophrenia and in normal subjects. Psychophysiology 39, 124–132. 10.1111/1469-8986.3920124
    1. Sergerie K., Chochol C., Armony J. L. (2008). The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 32, 811–830. 10.1016/j.neubiorev.2007.12.002
    1. Shastri A., Lomarev M. P., Nelson S. J., George M. S., Holzwarth M. R., Bohning D. E. (2001). A low-cost system for monitoring skin conductance during functional MRI. J. Magn. Reson. Imaging 14, 187–193. 10.1002/jmri.1171
    1. Small D. M., Gregory M. D., Mak Y. E., Gitelman D., Mesulam M. M., Parrish T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39, 701–711. 10.1016/S0896-6273(03)00467-7
    1. Solano-Castiella E., Anwander A., Lohmann G., Weiss M., Docherty C., Geyer S. (2010). Diffusion tensor imaging segments the human amygdala in vivo. Neuroimage 49, 2958–2965. 10.1016/j.neuroimage.2009.11.027
    1. Talairach J., Tournoux P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme.
    1. Taylor S. F., Liberzon I., Koeppe R. A. (2000). The effect of graded aversive stimuli on limbic and visual activation. Neuropsychologia 38, 1415–1425. 10.1016/S0028-3932(00)00032-4
    1. Taylor S. F., Phan K. L., Decker L. R., Liberzon I. (2003). Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage 18, 650–659. 10.1016/S1053-8119(02)00051-4
    1. Vytal K., Hamann S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J. Cogn. Neurosci. 22, 2864–2885. 10.1162/jocn.2009.21366
    1. Wager T. D., Phan K. L., Liberzon I., Taylor S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19, 513–531. 10.1016/S1053-8119(03)00078-8
    1. Winston J. S., Gottfried J. A., Kilner J. M., Dolan R. J. (2005). Integrated neural representations of odor intensity and affective valence in human amygdala. J. Neurosci. 25, 8903–8907. 10.1523/JNEUROSCI.1569-05.2005
    1. Wright C. I., Fischer H., Whalen P. J., McInerney S. C., Shin L. M., Rauch S. L. (2001). Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 12, 379–383. 10.1097/00001756-200102120-00039
    1. Zald D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Brain Res. Rev. 41, 88–123. 10.1016/S0165-0173(02)00248-5

Source: PubMed

3
Abonner