An fMRI study on the influence of sommeliers' expertise on the integration of flavor

Lionel Pazart, Alexandre Comte, Eloi Magnin, Jean-Louis Millot, Thierry Moulin, Lionel Pazart, Alexandre Comte, Eloi Magnin, Jean-Louis Millot, Thierry Moulin

Abstract

Flavors guide consumers' choice of foodstuffs, preferring those that they like and meet their needs, and dismissing those for which they have a conditioned aversion. Flavor affects the learning and consumption of foods and drinks; what is already well-known is favored and what is new is apprehended. The flavor of foodstuffs is also crucial in explaining some eating behaviors such as overconsumption. The "blind" taste test of wine is a good model for assessing the ability of people to convert mouth feelings into flavor. To determine the relative importance of memory and sensory capabilities, we present the results of an fMRI neuro-imaging study involving 10 experts and 10 matched control subjects using wine as a stimulus in a blind taste test, focusing primarily on the assessment of flavor integration. The results revealed activations in the brain areas involved in sensory integration, both in experts and control subjects (insula, frontal operculum, orbitofrontal cortex, amygdala). However, experts were mainly characterized by a more immediate and targeted sensory reaction to wine stimulation with an economic mechanism reducing effort than control subjects. Wine experts showed brainstem and left-hemispheric activations in the hippocampal and parahippocampal formations and the temporal pole, whereas control subjects showed activations in different associative cortices, predominantly in the right hemisphere. These results also confirm that wine experts work simultaneously on sensory quality assessment and on label recognition of wine.

Keywords: expertise; fMRI; flavor; olfaction pathways; taste; wine.

Figures

Figure 1
Figure 1
Example of activations involving flavor integration (from Table 2). Visible activations are left pars opercularis and left and right insula for controls during the taste phase, right and left anterior insula and right orbitofrontal cortex for controls during the after-taste phase, left insula for experts during the taste phase, orbitofrontal cortex and the associative occipital cortex for experts during the after-taste phase.
Figure 2
Figure 2
Beta-value averages for the areas involved in flavor, based on Table 2. For each area from a group, the average values are given for the experts Group (red) and the Controls group (blue). The error bars indicate standard error. All regions of interest are from the Controls group, except for the two marked with * which are taken from the experts.
Figure 3
Figure 3
Example of activations involving memory (from Table 3) for the contrast experts minus controls. Activations in green are obtained during the taste phase; those in orange are obtained during the after-taste phase. Visible activations are both in the amygdala/hippocampus complex (taste phase), parahippocampal gyri (right and left for the taste phase, right for the after-taste phase), occipital associative cortex (right during the taste phase, left during the after-taste phase).
Figure 4
Figure 4
Beta-values of the contrast experts minus controls calculated for the regions involved in memory. Two conditions are concerned, in green for the wine and in blue for water. The error bars indicate standard error. The regions marked with # are activated during the after-taste phase, the others during the taste phase.

References

    1. Andrieu P., Bonnans V., Meneses J., Millot J. L., Moulin T., Gharbi T. (2014). A modular, computer-controlled system for olfactory stimulation in the MRI environment. Behav. Res. Methods 46, 178–184. 10.3758/s13428-013-0362-x
    1. Auvray M., Spence C. (2008). The multisensory perception of flavor. Conscious. Cogn. 17, 1016–1031. 10.1016/j.concog.2007.06.005
    1. Ballester J., Patris B., Symoneaux R., Valentin D. (2008). Conceptual vs. perceptual wine spaces: does expertise matter? Food Qual. Prefer. 19, 267–276. 10.1016/j.foodqual.2007.08.001
    1. Bender G., Veldhuizen M. G., Meltzer J. A., Gitelman D. R., Small D. M. (2009). Neural correlates of evaluative compared with passive tasting. Eur. J. Neurosci. 30, 327–338. 10.1111/j.1460-9568.2009.06819.x
    1. Bengtsson S., Berglund H., Gulyas B., Cohen E., Savic I. (2001). Brain activation during odor perception in males and females. Neuroreport 12, 2027–2033. 10.1097/00001756-200107030-00048
    1. Bensafi M., Croy I., Phillips N., Rouby C., Sezille C., Gerber J., et al. . (2014). The effect of verbal context on olfactory neural responses. Hum. Brain Mapp. 35, 810–818. 10.1002/hbm.22215
    1. Bensafi M., Iannilli E., Gerber J., Hummel T. (2008). Neural coding of stimulus concentration in the human olfactory and trigeminal systems. Neuroscience 154, 832–838. 10.1016/j.neuroscience.2008.03.079
    1. Billot P. E., Comte A., Galliot E., Andrieu P., Bonnans V., Tatu L., et al. . (2011). Time course of odorant- and trigeminal-induced activation in the human brain: an event-related functional magnetic resonance imaging study. Neuroscience 189, 370–376. 10.1016/j.neuroscience.2011.05.035
    1. Blackman J., Saliba A., Schmidtke L. (2010). Sweetness acceptance of novices, experienced consumers and winemakers in Hunter Valley Semillon wines. Food Qual. Prefer. 21, 679–683. 10.1016/j.foodqual.2010.05.001
    1. Boyle J. A., Frasnelli J., Gerber J., Heinke M., Hummel T. (2007a). Cross-modal integration of intranasal stimuli: a functional magnetic resonance imaging study. Neuroscience 149, 223–231. 10.1016/j.neuroscience.2007.06.045
    1. Boyle J. A., Heinke M., Gerber J., Frasnelli J., Hummel T. (2007b). Cerebral activation to intranasal chemosensory trigeminal stimulation. Chem. Senses 32, 343–353. 10.1093/chemse/bjm004
    1. Boynton G. M., Engel S. A., Glover G. H., Heeger D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221.
    1. Brand G., Brisson R. (2012). Lateralisation in wine olfactory threshold detection: comparison between experts and novices. Laterality 17, 583–596. 10.1080/1357650X.2011.595955
    1. Brand G., Millot J. L. (2001). Sex differences in human olfaction: between evidence and enigma. Q. J. Exp. Psychol. B. 54, 259–270. 10.1080/02724990143000045
    1. Brochet F., Dubourdieu D. (2001). Wine descriptive language supports cognitive specificity of chemical senses. Brain Lang. 77, 187–196. 10.1006/brln.2000.2428
    1. Burdach K. J., Doty R. L. (1987). The effects of mouth movements, swallowing, and spitting on retronasal odor perception. Physzol. Behav. 41, 353–356. 10.1016/0031-9384(87)90400-8
    1. Castriota-Scanderbeg A., Hagberg G. E., Cerasa A., Committeri G., Galati G., Patria F., et al. . (2005). The appreciation of wine by sommeliers: a functional magnetic resonance study of sensory integration. Neuroimage 25, 570–578. 10.1016/j.neuroimage.2004.11.045
    1. Cerf-Ducastel B., Murphy C. (2001). fMRI activation in response to odorants orally delivered in aqueous solutions. Chem. Senses 26, 625–637. 10.1093/chemse/26.6.625
    1. D'Alessandro S., Pecotich A. (2013). Evaluation of wine by expert and novice consumers in the presence of variations in quality, brand and country of origin cues. Food Qual. Prefer. 28, 28–303
    1. de Araujo I. E., Rolls E. T., Kringelbach M. L., McGlone F., Phillips N. (2003). Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18, 2059–2068. 10.1046/j.1460-9568.2003.02915.x
    1. Desgranges B., Ramirez-Amaya V., Ricano-Cornejo I., Levy F., Ferreira G. (2010). Flavor preference learning increases olfactory and gustatory convergence onto single neurons in the basolateral amygdala but not in the insular cortex in rats. PLoS ONE 5:e10097. 10.1371/journal.pone.0010097
    1. Doty R. L. (1989). Influence of age and age-related diseases on olfactory function. Ann. N.Y. Acad. Sci. 561, 76–86. 10.1111/j.1749-6632.1989.tb20971.x
    1. Francis S., Rolls E. T., Bowtell R., McGlone F., O'Doherty J., Browning A., et al. . (1999). The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. Neuroreport 10, 453–459.
    1. Fu W., Sugai T., Yoshimura H., Onoda N. (2004). Convergence of olfactory and gustatory connections onto the endopiriform nucleus in the rat. Neuroscience 126, 1033–1041. 10.1016/j.neuroscience.2004.03.041
    1. Fulbright R. K., Skudlarski P., Lacadie C. M., Warrenburg S., Bowers A. A., Gore J. C., et al. . (1998). Functional MR imaging of regional brain responses to pleasant and unpleasant odors. AJNR Am. J. Neuroradiol. 19, 1721–1726.
    1. González J., Barros-Loscertales A., Pulvermuller F., Meseguer V., Sanjuan A., Belloch V., et al. . (2006). Reading cinnamon activates olfactory brain regions Neuroimage 32, 906–912. 10.1016/j.neuroimage.2006.03.037
    1. Haase L., Cerf-Ducastel B., Murphy C. (2009). The effect of stimulus delivery technique on perceived intensity functions for taste stimuli: implications for fMRI studies. Atten. Percept. Psychophys. 71, 1167–1173. 10.3758/APP.71.5.1167
    1. Hughson A. L., Boakes R. A. (2002). The knowing nose: the role of knowledge in wine expertise. Food Qual. Prefer. 13, 463–472. 10.1016/S0950-3293(02)00051-4
    1. Hund-Georgiadis M., von Cramon D. Y. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp. Brain Res. 125, 417–425. 10.1007/s002210050698
    1. Katotomichelakis M., Balatsouras D., Tripsianis G., Davris S., Maroudias N., Danielides V., et al. . (2007). The effect of smoking on the olfactory function. Rhinology 45, 273–280.
    1. Kikuchi S., Kubota F., Nisijima K., Washiya S., Kato S. (2005). Cerebral activation focusing on strong tasting food: a functional magnetic resonance imaging study. Neuroreport 16, 281–283. 10.1097/00001756-200502280-00016
    1. King E. S., Dunn R. L., Heymann H. (2013). The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 28, 235–243. 10.1016/j.foodqual.2012.08.013
    1. Kinomura S., Kawashima R., Yamada K., Ono S., Itoh M., Yoshioka S., et al. . (1994). Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Res. 659, 263–266. 10.1016/0006-8993(94)90890-7
    1. Kobayashi M. (2006). Functional organization of the human gustatory cortex. J. Oral Biosci. 48, 244–260. 10.1016/S1349-0079(06)80007-1
    1. Kobayashi M., Takeda M., Hattori N., Fukunaga M., Sasabe T., Inoue N., et al. . (2004). Functional imaging of gustatory perception and imagery: “top-down” processing of gustatory signals. Neuroimage 23, 1271–1282. 10.1016/j.neuroimage.2004.08.002
    1. Kühn S., Gallinat J. (2013). Does taste matter? How anticipation of cola brands influences gustatory processing in the brain. PLoS ONE 8:e61569. 10.1371/journal.pone.0061569
    1. Laska M., Distel H., Hudson R. (1997). Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem. Senses 22, 447–456. 10.1093/chemse/22.4.447
    1. Lawless H. T. (1984). Flavor description of white wine by “expert” and nonexpert wine consumers. J. Food Sci. 49, 120–123. 10.1111/j.1365-2621.1984.tb13686.x
    1. Lombion S., Comte A., Tatu L., Brand G., Moulin T., Millot J. L. (2009). Patterns of cerebral activation during olfactory and trigeminal stimulations. Hum. Brain Mapp. 30, 821–828. 10.1002/hbm.20548
    1. Lotze M., Scheler G., Tan H. R., Braun C., Birbaumer N. (2003). The musician's brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20, 1817–1829. 10.1016/j.neuroimage.2003.07.018
    1. Lundstrom J. N., Hummel T. (2006). Sex-specific hemispheric differences in cortical activation to a bimodal odor. Behav. Brain Res. 166, 197–203. 10.1016/j.bbr.2005.07.015
    1. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., et al. . (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97, 4398–4403. 10.1073/pnas.070039597
    1. Maier J. X., Wachowiak M., Katz D. B. (2012). Chemosensory convergence on primary olfactory cortex. J. Neurosci. 32, 17037–17047. 10.1523/JNEUROSCI.3540-12.2012
    1. McClure S. M., Li J., Tomlin D., Cypert K. S., Montague L. M., Montague P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron 44, 379–387. 10.1016/j.neuron.2004.09.019
    1. Morrot G., Brochet F., Dubourdieu D. (2001). The color of odors. Brain Lang. 79, 309–320. 10.1006/brln.2001.2493
    1. O'Doherty J., Rolls E. T., Francis S., Bowtell R., McGlone F. (2001). Representation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85, 1315–1321.
    1. Okamoto M., Dan I. (2013). Extrinsic information influences taste and flavor perception: a review from psychological and neuroimaging perspectives. Semin. Cell Dev. Biol. 24, 247–255. 10.1016/j.semcdb.2012.11.001
    1. Parr W. V., Heatherbell D., White K. G. (2002). Demystifying wine expertise: olfactory threshold, perceptual skill and semantic memory in expert and novice wine judges. Chem. Senses 27, 747–755. 10.1093/chemse/27.8.747
    1. Parr W. V., White K. G., Heatherbell D. A. (2004). Exploring the nature of wine expertise: what underlies wine experts' olfactory recognition memory advantage? Food Qual. Prefer. 15, 411–420. 10.1016/j.foodqual.2003.07.002
    1. Pierce J., Halpern B. (1996). Orthonasal and retronasal odorant identification based upon vapor phase input from common sub-stances. Chem. Senses 21, 529–543. 10.1093/chemse/21.5.529
    1. Plailly J., Delon-Martin C., Royet J. P. (2012). Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum. Brain Mapp. 33, 224–234. 10.1002/hbm.21207
    1. Plassmann H., O'Doherty J., Shiv B., Rangel A. (2008). Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl. Acad. Sci. U.S.A. 105, 1050–1054. 10.1073/pnas.0706929105
    1. Prescott J. (1999). Flavor as a psychological construct: implications for perceiving and measuring the sensory qualities of foods. Food Qual. Prefer. 10, 349–356. 10.1016/S0950-3293(98)00048-2
    1. Prescott J. (2012). Multimodal chemosensory interactions and perception of flavour, in The Neural Bases of Multisensory Processes, eds Murray M. M., Wallace M. T. (Boca Raton, FL: CRC Press; ), Chap 35.
    1. Pritchard T. C., Norgren R. (2004). Gustatory system, in The Human Nervous System, eds Paxinos G., Mai J. K. (Amsterdam: Elsevier; ), 1171–1196. 10.1016/B978-012547626-3/50032-6
    1. Qureshy A., Kawashima R., Imran M. B., Sugiura M., Goto R., Okada K., et al. . (2000). Functional mapping of human brain in olfactory processing: a PET study. J. Neurophysiol. 84, 1656–1666.
    1. Richardson J. T., Zucco G. M. (1989). Cognition and olfaction: a review. Psychol. Bull. 105, 352–360. 10.1037/0033-2909.105.3.352
    1. Rogers T. T., Hocking J., Noppeney U., Mechelli A., Gorno-Tempini M. L., Patterson K., et al. . (2006). Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging. Cogn. Affect. Behav. Neurosci. 6, 201–213. 10.3758/CABN.6.3.201
    1. Rolls E. T., Scott T. (2003). Central taste anatomy and neurophysiology, in Handbook of Olfaction and Gustation, ed Doty R. L. (New York, NY: Marcel Dekker; ), 679–705
    1. Rolls E. T. (2008). Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol. Hung. 95, 131–164. 10.1556/APhysiol.95.2008.2.1
    1. Rolls E. T., Kringelbach M. L., de Araujo I. E. T. (2003). Different representations of pleasant and unpleasant odours in the human brain. Eur. J. Neurosci. 18, 695–703. 10.1046/j.1460-9568.2003.02779.x
    1. Royet J. P., Delon-Martin C., Plailly J. (2013a). Odor mental imagery in non-experts in odors: a paradox? Front. Hum. Neurosci. 7:87. 10.3389/fnhum.2013.00087
    1. Royet J. P., Koenig O., Gregoire M. C., Cinotti L., Lavenne F., Le Bars D., et al. . (1999). Functional anatomy of perceptual and semantic processing for odors. J. Cogn. Neurosci. 11, 94–109. 10.1162/089892999563166
    1. Royet J. P., Plailly J., Saive A. L., Veyrac A., Delon-Martin C. (2013b). The impact of expertise in olfaction. Front Psychol. 4:928. 10.3389/fpsyg.2013.00928
    1. Rozin P. (1982). Taste-smell confusions” and the duality of the olfactory sense. Percept. Psychophys. 31, 397–401. 10.3758/BF03202667
    1. Sáenz-Navajas M. P., Ballester J., Pêcher C., Peyron D., Valentin D. (2013). Sensory drivers of intrinsic quality of red wines: effect of culture and level of expertise. Food Res. Int. 54, 1506–1518. 10.1016/j.foodres.2013.09.048
    1. Sáenz-Navajas M. P., Campo E., Avizcuri J. M., Valentin D., Fernández-Zurbano P., Ferreira V. (2012). Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: wine reconstitution strategies and sensory sorting task. Anal. Chim. Acta. 732, 64–72. 10.1016/j.aca.2011.12.042
    1. Saive A. L., Royet J. P., Plailly J. (2014). A review on the neural bases of episodic odor memory: from laboratory-based to autobiographical approaches. Front. Behav. Neurosci. 8:240. 10.3389/fnbeh.2014.00240
    1. Salles C., Chagnon M. C., Feron G., Guichard E., Laboure H., Morzel M., et al. . (2011). In-mouth mechanisms leading to flavor release and perception. Crit. Rev. Food Sci. Nutr. 51, 67–90. 10.1080/10408390903044693
    1. Savic I. (2002). Brain imaging studies of the functional organization of human olfaction. Neuroscientist 8, 204–211. 10.1177/1073858402008003006
    1. Seth A. K., Chorley P., Barnett L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. Neuroimage 65, 540–555. 10.1016/j.neuroimage.2012.09.049
    1. Small D. M. (2012). Flavor is in the brain. Physiol. Behav. 107, 540–552. 10.1016/j.physbeh.2012.04.011
    1. Small D. M., Bender G., Veldhuizen M. G., Rudenga K., Nachtigal D., Felsted J. (2007). The role of the human orbitofrontal cortex in taste and flavor processing. Ann. N.Y. Acad. Sci. 1121, 136–151. 10.1196/annals.1401.002
    1. Small D. M., Jones-Gotman M., Zatorre R. J., Petrides M., Evans A. C. (1997). Flavor processing: more than the sum of its parts. Neuroreport 8, 3913–3917. 10.1097/00001756-199712220-00014
    1. Small D. M., Prescott J. (2005). Odor/taste integration and the perception of flavor. Exp. Brain Res. 166, 345–357. 10.1007/s00221-005-2376-9
    1. Small D. M., Voss J., Mak Y. E., Simmons K. B., Parrish T., Gitelman D. (2004). Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92, 1892–1903. 10.1152/jn.00050.2004
    1. Small D. M., Zald D. H., Jones-Gotman M., Zatorre R. J., Pardo J. V., Frey S., et al. . (1999). Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10, 7–14. 10.1097/00001756-199901180-00002
    1. Small D. M., Zatorre R. J., Dagher A., Evans A. C., Jones-Gotman M. (2001). Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733. 10.1093/brain/124.9.1720
    1. Sobel N., Bradley N. J., Mainland J., Yousem D. M. (2003). Functional neuroimaging of human olfaction, in Handbook of Olfaction and Gustation, ed Doty R. L. (New York, NY: Marcel Dekker; ), 251–273
    1. Sobel N., Prabhakaran V., Desmond J. E., Glover G. H., Goode R. L., Sullivan E. V., et al. . (1998). Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392, 282–286. 10.1038/32654
    1. Solomon G. (1990). Psychology of novice and expert wine talk. Am. J. Psychol. 105, 495–517. 10.2307/1423321
    1. Spaniol J., Davidson P. S., Kim A. S., Han H., Moscovitch M., Grady C. L. (2009). Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47, 1765–1779. 10.1016/j.neuropsychologia.2009.02.028
    1. Stark C. E., Squire L. R. (2001). Simple and associative recognition memory in the hippocampal region. Learn. Mem. 8, 190–197. 10.1101/lm.40701
    1. Talairach J., Tournoux P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. New York, NY: Thieme Medical Publishers
    1. Tulving E. (1995). Organisation of memory: quo vadis? in The Cognitive Neurosciences, ed Gazzaniga M. S. (Cambridge, MA: MIT Press; ), 839–847
    1. Van den Bosch I., Dalenberg J. R., Renken R., Van Langeveld A. W., Smeets P. A., Griffioen-Roose S., et al. . (2014). To like or not to like: neural substrates of subjective flavor preferences. Behav. Brain Res. 269, 128–137. 10.1016/j.bbr.2014.04.010
    1. Vedel A., Charle G., Charnay P., Tourmeau J. (1972). Essai sur la Dégustation des Vins. Mâcon: Institut National des Appellations d'Origine des Vins et Eaux-de-Vie.
    1. Vicente K. J., Wang J. H. (1998). An ecological theory of expertise effects in memory recall. Psychol. Rev. 105, 33–57. 10.1037/0033-295X.105.1.33
    1. Villamor R. R., Ross C. F. (2013). Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 4, 1–20. 10.1146/annurev-food-030212-182707
    1. Visser M., Embleton K. V., Jefferies E., Parker G. J., Ralph M. A. (2010a). The inferior, anterior temporal lobes and semantic memory clarified: novel evidence from distortion-corrected fMRI. Neuropsychologia 48, 1689–1696. 10.1016/j.neuropsychologia.2010.02.016
    1. Visser M., Jefferies E., Lambon Ralph M. A. (2010b). Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22, 1083–1094. 10.1162/jocn.2009.21309
    1. Wang J., Eslinger P. J., Smith M. B., Yang Q. X. (2005). Functional magnetic resonance imaging study of human olfaction and normal aging. J. Gerontol. A Biol. Sci. Med. Sci. 60, 510–514. 10.1093/gerona/60.4.510
    1. Yousem D. M., Maldjian J. A., Siddiqi F., Hummel T., Alsop D. C., Geckle R. J., et al. . (1999). Gender effects on odor-stimulated functional magnetic resonance imaging. Brain Res. 818, 480–487. 10.1016/S0006-8993(98)01276-1
    1. Zald D. H., Pardo J. V. (2000). Cortical activation induced by intraoral stimulation with water in humans. Chem. Senses 25, 267–275. 10.1093/chemse/25.3.267
    1. Zatorre R. J., Jones-Gotman M., Evans A. C., Meyer E. (1992). Functional localization and lateralization of human olfactory cortex. Nature 360, 339–340. 10.1038/360339a0

Source: PubMed

3
Abonner