Cognitive Flexibility Training: A Large-Scale Multimodal Adaptive Active-Control Intervention Study in Healthy Older Adults

Jessika I V Buitenweg, Renate M van de Ven, Sam Prinssen, Jaap M J Murre, K Richard Ridderinkhof, Jessika I V Buitenweg, Renate M van de Ven, Sam Prinssen, Jaap M J Murre, K Richard Ridderinkhof

Abstract

As aging is associated with cognitive decline, particularly in the executive functions, it is essential to effectively improve cognition in older adults. Online cognitive training is currently a popular, though controversial method. Although some changes seem possible in older adults through training, far transfer, and longitudinal maintenance are rarely seen. Based on previous literature we created a unique, state-of-the-art intervention study by incorporating frequent sessions and flexible, novel, adaptive training tasks, along with an active control group. We created a program called TAPASS (Training Project Amsterdam Seniors and Stroke), a randomized controlled trial. Healthy older adults (60-80 y.o.) were assigned to a frequent- (FS) or infrequent switching (IS) experimental condition or to the active control group and performed 58 half-hour sessions over the course of 12 weeks. Effects on executive functioning, processing- and psychomotor speed, planning, verbal long term memory, verbal fluency, and reasoning were measured on four time points before, during and after the training. Additionally, we examined the explorative question which individual aspects added to training benefit. Besides improvements on the training, we found significant time effects on multiple transfer tasks in all three groups that likely reflected retest effects. No training-specific improvements were detected, and we did not find evidence of additional benefits of individual characteristics. Judging from these results, the therapeutic value of using commercially available training games to train the aging brain is modest, though any apparent effects should be ascribed more to expectancy and motivation than to the elements in our training protocol. Our results emphasize the importance of using parallel tests as outcome measures for transfer and including both active and passive control conditions. Further investigation into different training methods is advised, including stimulating social interaction and the use of more variable, novel, group-based yet individual-adjusted exercises.

Keywords: aging; cognitive flexibility; cognitive training; executive functions; videogames.

Figures

Figure 1
Figure 1
Flow chart of the study design. FS, frequent switching; IS, infrequent switching.

References

    1. Ackerman P. L., Kanfer R., Calderwood C. (2010). Use it or lose it? Wii brain exercise practice and reading for domain knowledge. Psychol. Aging 25, 753. 10.1037/a0019277
    1. Allaire J. C., McLaughlin A. C., Trujillo A., Whitlock L. A., LaPorte L., Gandy M. (2013). Successful aging through digital games: socioemotional differences between older adult gamers and non-gamers. Comput. Hum. Behav. 29, 1302–1306. 10.1016/j.chb.2013.01.014
    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. . (2013). Video game training enhances cognitive control in older adults. Nature 501, 97–101. 10.1038/nature12486
    1. Au J., Sheehan E., Tsai N., Duncan G. J., Buschkuehl M., Jaeggi S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychon. Bull. Rev. 22, 366–377. 10.3758/s13423-014-0699-x
    1. Auriacombe S., Fabrigoule C., Lafont S., Jacqmin-Gadda H., Dartigues J. (2001). Letter and category fluency in normal elderly participants: a population-based study. Aging Neuropsychol. Cogn. 8, 98–108. 10.1076/anec.8.2.98.841
    1. Ball K., Edwards J. D., Ross L. A. (2007). The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. Ser. B 62, 19–31. 10.1093/geronb/62.special_issue_1.19
    1. Ballesteros S., Prieto A., Mayas J., Toril P., Pita C., Ponce de León L., et al. . (2014). Brain training with non-action video games enhances aspects of cognition in older adults: a randomized controlled trial. Front. Aging Neurosci. 6:277. 10.3389/fnagi.2014.00277
    1. Baniqued P. L., Lee H., Voss M. W., Basak C., Cosman J. D., Desouza S., et al. . (2013). Selling points: What cognitive abilities are tapped by casual video games? Acta Psychol. 142, 74–86. 10.1016/j.actpsy.2012.11.009
    1. Barban F., Annicchiarico R., Pantelopoulos S., Federici A., Perri R., Fadda L., et al. . (2015). Protecting cognition from aging and Alzheimer's disease: a computerized cognitive training combined with reminiscence therapy. Int. J. Geriatric Psychiatry 31, 340–348. 10.1002/gps.4328
    1. Basak C., Boot W. R., Voss M. W., Kramer A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 23, 765. 10.1037/a0013494
    1. Benton A., Hamsher K. D., Sivan A. (1989). Multilingual Aphasia Examination. Iowa, IA: AJA Associates.
    1. Bissig D., Lustig C. (2007). Who benefits from memory training? Psychol. Sci. 18, 720–726. 10.1111/j.1467-9280.2007.01966.x
    1. Boot W. R., Champion M., Blakely D. P., Wright T., Souders D. J., Charness N. (2013a). Video games as a means to reduce age-related cognitive decline: attitudes, compliance, and effectiveness. Front. Psychol. 4:31. 10.3389/fpsyg.2013.00031
    1. Boot W. R., Simons D. J., Stothart C., Stutts C. (2013b). The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspect. Psychol. Sci. 8, 445–454. 10.1177/1745691613491271
    1. Brandt J., Spencer M., Folstein M. (1988). The telephone interview for cognitive status. Cogn. Behav. Neurol. 1, 111–118.
    1. Buchler N. G., Hoyer W. J., Cerella J. (2008). Rules and more rules: The effects of multiple tasks, extensive training, and aging on task-switching performance. Mem. Cogn. 36, 735–748. 10.3758/MC.36.4.735
    1. Buitenweg J. I., Murre J. M., Ridderinkhof K. R. (2012). Brain training in progress: a review of trainability in healthy seniors. Front. Hum. Neurosci. 6:183. 10.3389/fnhum.2012.00183
    1. Buschkuehl M., Jaeggi S. M., Hutchison S., Perrig-Chiello P., Däpp C., Müller M., et al. . (2008). Impact of working memory training on memory performance in old-old adults. Psychol. Aging 23, 743. 10.1037/a0014342
    1. Charles S. T., Carstensen L. L. (2010). Social and emotional aging. Ann. Rev. Psychol. 61, 383–409. 10.1146/annurev.psych.093008.100448
    1. Culbertson W., Zillmer E. (2005). Tower of London Drexel University: Technical Manual. Toronto, ON: Multi-Health Systems.
    1. Davis H. P., Small S. A., Stern Y., Mayeux R., Feldstein S. N., Keller F. R. (2003). Acquisition, recall, and forgetting of verbal information in long-term memory by young, middle-aged, and elderly individuals. Cortex 39, 1063–1091. 10.1016/S0010-9452(08)70878-5
    1. de Vries M., Geurts H. M. (2014). Beyond individual differences: are working memory and inhibition informative specifiers within ASD? J. Neural Trans. 121, 1183–1198. 10.1007/s00702-014-1225-z
    1. Delis D. C., Kaplan E., Kramer J. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: Psychological Corporation.
    1. Dougherty M. R., Hamovitz T., Tidwell J. W. (2016). Reevaluating the effectiveness of n-back training on transfer through the bayesian lens: support for the null. Psychon. Bull. Rev. 23, 306–316. 10.3758/s13423-015-0865-9
    1. Düzel E., Bunzeck N., Guitart-Masip M., Düzel S. (2010). NOvelty-related motivation of anticipation and exploration by dopamine (NOMAD): implications for healthy aging. Neurosci. Biobehav. Rev. 34, 660–669. 10.1016/j.neubiorev.2009.08.006
    1. Fisk J. E., Sharp C. A. (2004). Age-related impairment in executive functioning: updating, inhibition, shifting, and access. J. Clin. Exp. Neuropsychol. 26, 874–890. 10.1080/13803390490510680
    1. Foroughi C. K., Monfort S. S., Paczynski M., McKnight P. E., Greenwood P. M. (2016). Placebo effects in cognitive training. Proc. Natl. Acad. Sci. U.S.A. 113, 7470–7474. 10.1073/pnas.1601243113
    1. Green C. S., Bavelier D. (2008). Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol. Aging 23, 692. 10.1037/a0014345
    1. Gronwall D. M. (1977). Paced auditory serial-addition task: a measure of recovery from concussion. Percept. Mot. Skills 44, 367–373. 10.2466/pms.1977.44.2.367
    1. Grubbs F. E. (1950). Sample criteria for testing outlying observations. Ann. Mathemat. Stat. 21, 27–58. 10.1214/aoms/1177729885
    1. Harada C. N., Love M. C. N., Triebel K. L. (2013). Normal cognitive aging. Clin. Geriatr. Med. 29, 737–752. 10.1016/j.cger.2013.07.002
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–990. 10.1111/j.1467-7687.2009.00846.x
    1. Kelly M. E., Loughrey D., Lawlor B. A., Robertson I. H., Walsh C., Brennan S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res. Rev. 15, 28–43. 10.1016/j.arr.2014.02.004
    1. Kim B. J., Lee C. S., Oh B. H., Hong C. H., Lee K. S., Son S. J., et al. . (2013). A normative study of lexical verbal fluency in an educationally-diverse elderly population. Psychiatry Investigat. 10, 346–351. 10.4306/pi.2013.10.4.346
    1. Kirchner W. K. (1958). Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 352. 10.1037/h0043688
    1. Kühn S., Gleich T., Lorenz R. C., Lindenberger U., Gallinat J. (2014). Playing super mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol. Psychiatry 19, 265–271. 10.1038/mp.2013.120
    1. Lampit A., Hallock H., Valenzuela M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11:e1001756. 10.1371/journal.pmed.1001756
    1. Langbaum J. B., Rebok G. W., Bandeen-Roche K., Carlson M. C. (2009). Predicting memory training response patterns: results from ACTIVE. J. Gerontol. Ser. B 64, 14–23. 10.1093/geronb/gbn026
    1. Lee H., Boot W. R., Basak C., Voss M. W., Prakash R. S., Neider M., et al. (2012). Performance gains from directed training do not transfer to untrained tasks. Acta Psychol. 139, 146–158. 10.1016/j.actpsy.2011.11.003
    1. Lewis M. S., Miller L. S. (2007). Executive control functioning and functional ability in older adults. Clin. Neuropsychol. 21, 274–285. 10.1080/13854040500519752
    1. Logan G. D., Cowan W. B., Davis K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. J. Exp. Psychol. 10:276.
    1. Lövdén M., Schaefer S., Noack H., Bodammer N. C., Kühn S., Heinze H., et al. . (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol. Aging 33:e22. 10.1016/j.neurobiolaging.2011.02.013
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., et al. . (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–12528. 10.1073/pnas.0605194103
    1. McKay S. M., Maki B. E. (2010). Attitudes of older adults toward shooter video games: an initial study to select an acceptable game for training visual processing. Gerontechnology 9, 5–17. 10.4017/gt.2010.09.01.001.00
    1. Melby-Lervag M., Redick T. S., Hulme C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of far transfer: evidence from a meta-analytic review. Perspect. Psychol. Sci. 11, 512–534. 10.1177/1745691616635612
    1. Milner B. (1971). Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 27, 272–277. 10.1093/oxfordjournals.bmb.a070866
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex frontal lobe tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734
    1. Nap H., De Kort Y., IJsselsteijn W. (2009). Senior gamers: preferences, motivations and needs. Gerontechnology 8, 247–262. 10.4017/gt.2009.08.04.003.00
    1. Noice H., Noice T. (2008). An arts intervention for older adults living in subsidized retirement homes. Aging Neuropsychol. Cogn. 16, 56–79. 10.1080/13825580802233400
    1. Nouchi R., Taki Y., Takeuchi H., Hashizume H., Akitsuki Y., Shigemune Y., et al. . (2012). Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. PLoS ONE 7:e29676. 10.1371/journal.pone.0029676
    1. Optale G., Urgesi C., Busato V., Marin S., Piron L., Priftis K., et al. . (2010). Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study. Neurorehabil. Neural Repair 24, 348–357. 10.1177/1545968309353328
    1. Park D. C., Bischof G. N. (2013). The aging mind: neuroplasticity in response to cognitive training. Dialog. Clin. Neurosci. 15, 109–119.
    1. Phillips L. H., Kliegel M., Martin M. (2006). Age and planning tasks: the influence of ecological validity. Internat. J. Aging Hum. Devel. 62, 175–184. 10.2190/EM1W-HAYC-TMLM-WW8X
    1. Raven J., Raven J. C., Court J. H. (1998). Manual for Raven's Progressive Matrices and Vocabulary Scales—Section 3: Standard Progressive Matrices. Oxford: Oxford Psychologists Press.
    1. Richmond L. L., Morrison A. B., Chein J. M., Olson I. R. (2011). Working memory training and transfer in older adults. Psychol. Aging 26, 813. 10.1037/a0023631
    1. Rogers R. D., Monsell S. (1995). Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. 124, 207.
    1. Rose N. S., Rendell P. G., Hering A., Kliegel M., Bidelman G. M., Craik F. I. (2015). Cognitive and neural plasticity in older adults' prospective memory following training with the virtual week computer game. Front. Hum. Neurosci. 9:592. 10.3389/fnhum.2015.00592
    1. Saan R., Deelman B. (1986). De 15-Woordentest a en b Een Voorlopige Handleiding. Groningen: Afdeling Neuropsychologie.
    1. Saghaei M., Saghaei S. (2011). Implementation of an open-source customizable minimization program for allocation of patients to parallel groups in clinical trials. J. Biomed. Sci. Eng. 4, 734 10.4236/jbise.2011.411090
    1. Salthouse T. A. (2000). Aging and measures of processing speed. Biol. Psychol. 54, 35–54. 10.1016/S0301-0511(00)00052-1
    1. Slagter H. A. (2012). Conventional working memory training may not improve intelligence. Trends Cogn. Sci. 16, 582–583. 10.1016/j.tics.2012.10.001
    1. Stablum F., Umiltà C., Mazzoldi M., Pastore N., Magon S. (2007). Rehabilitation of endogenous task shift processes in closed head injury patients. Neuropsychol. Rehabil. 17, 1–33. 10.1080/13506280500411111
    1. Sullivan J. R., Riccio C. A., Castillo C. L. (2009). Concurrent validity of the tower tasks as measures of executive function in adults: a meta-analysis. Appl. Neuropsychol. 16, 62–75. 10.1080/09084280802644243
    1. Thurstone L. L. (1938). Primary Mental Abilities. Chicago, IL: University of Chicago Press.
    1. Toril P., Reales J. M., Mayas J., Ballesteros S. (2016). Video game training enhances visuospatial working memory and episodic memory in older adults. Front. Hum. Neurosci. 10:206. 10.3389/fnhum.2016.00206
    1. Troyer A. K., Moscovitch M., Winocur G. (1997). Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11:138. 10.1037/0894-4105.11.1.138
    1. Unsworth N., Heitz R. P., Schrock J. C., Engle R. W. (2005). An automated version of the operation span task. Behav. Res. Methods 37, 498–505. 10.3758/BF03192720
    1. van de Ven R. M., Buitenweg J. I., Schmand B., Veltman D. J., Aaronson J. A., Nijboer T. C., et al. . (2017). Brain training improves recovery after stroke but waiting list improves equally: a multicenter randomized controlled trial of a computer-based cognitive flexibility training. PLoS ONE 12:e0172993. 10.1371/journal.pone.0172993
    1. van de Ven R. M., Murre J. M., Veltman D. J., Schmand B. A. (2016). Computer-based cognitive training for executive functions after stroke: a systematic review. Front. Hum. Neurosci. 10:150. 10.3389/fnhum.2016.00150
    1. van de Ven R. M., Schmand B., Groet E., Veltman D. J., Murre J. M. (2015). The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study. BMC Neurol. 15:144. 10.1186/s12883-015-0397-y
    1. van Muijden J., Band G. P., Hommel B. (2012). Online games training aging brains: Limited transfer to cognitive control functions. Front. Hum. Neurosci. 6:221. 10.3389/fnhum.2012.00221
    1. Vercoulen J. H. M. M., Bazelmans E., Swanink C. M. A., Fennis J. F. M., Galama J. M. D., Jongen P. J. H., et al. . (1997). Physical activity in chronic fatigue syndrome: assessment and its role in fatigue. J. Psychiatr. Res. 31, 661–673.
    1. Verhaeghen P., Marcoen A., Goossens L. (1992). Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychol. Aging 7, 242–251. 10.1037/0882-7974.7.2.242
    1. Wang M. Y., Chang C. Y., Su S. Y. (2011). What's cooking? - cognitive training of executive function in the elderly. Front. Psychol. 2:228. 10.3389/fpsyg.2011.00228
    1. Wechsler V. D. (2000). Wechsler Adult Intelligence Scale (WAIS-III) Nederlandstalige Bewerking. Technische Handleiding. Lisse: Swets and Zeitlinger.
    1. Whitbourne S. K., Ellenberg S., Akimoto K. (2013). Reasons for playing casual video games and perceived benefits among adults 18 to 80 years old. Cyberpsychol. Behav. Soc. Netw. 16, 892–897. 10.1089/cyber.2012.0705
    1. Whitlock L. A., McLaughlin A. C., Allaire J. C. (2012). Individual differences in response to cognitive training: using a multi-modal, attentionally demanding game-based intervention for older adults. Comput. Hum. Behav. 28, 1091–1096. 10.1016/j.chb.2012.01.012
    1. Worm-Smeitink M., Gielissen M., Bloot L., van Laarhoven H. W. M., van Engelen B., van Riel P., et al. . (2017). The assessment of fatigue: psychometric qualities and norms for the checklist individual strength. J. Psychosomat. Res. 98, 40–46. 10.1016/j.jpsychores.2017.05.007
    1. Ybarra O., Burnstein E., Winkielman P., Keller M. C., Manis M., Chan E., et al. . (2008). Mental exercising through simple socializing: social interaction promotes general cognitive functioning. Pers. Soc. Psychol. Bull. 34, 248–259. 10.1177/0146167207310454
    1. Zachary R. (1991). The Manual of the Shipley Institute of Living Scale. Los Angeles, CA: Western Psychological Services.
    1. Zigmond A. S., Snaith R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67, 361–370.
    1. Zinke K., Zeintl M., Rose N. S., Putzmann J., Pydde A., Kliegel M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev. Psychol. 50, 304–315. 10.1037/a0032982

Source: PubMed

3
Abonner