Mindfulness video game improves connectivity of the fronto-parietal attentional network in adolescents: A multi-modal imaging study

Elena G Patsenko, Nagesh Adluru, Rasmus M Birn, Diane E Stodola, Tammi R A Kral, Reza Farajian, Lisa Flook, Cory A Burghy, Constance Steinkuehler, Richard J Davidson, Elena G Patsenko, Nagesh Adluru, Rasmus M Birn, Diane E Stodola, Tammi R A Kral, Reza Farajian, Lisa Flook, Cory A Burghy, Constance Steinkuehler, Richard J Davidson

Abstract

Mindfulness training has been shown to improve attention and change the underlying brain substrates in adults. Most mindfulness training programs involve a myriad of techniques, and it is difficult to attribute changes to any particular aspect of the program. Here, we created a video game, Tenacity, which models a specific mindfulness technique - focused attention on one's breathing - and assessed its potential to train an attentional network in adolescents. A combined analysis of resting state functional connectivity (rs-FC) and diffusion tensor imaging (DTI) yielded convergent results - change in communication within the left fronto-parietal network after two weeks of playing Tenacity compared to a control game. Rs-FC analysis showed greater connectivity between left dorsolateral prefrontal cortex (dlPFC) and left inferior parietal cortex (IPC) in the Tenacity group. Importantly, changes in left dlPFC - IPC rs-FC and changes in structural connectivity of the white matter tract that connects these regions -left superior longitudinal fasiculus (SLF) - were associated with changes in performance on an attention task. Finally, changes in left dlPFC - IPC rs-FC correlated with the change in left SLF structural connectivity as measured by fractional anisotropy (FA) in the Tenacity group only.

Trial registration: ClinicalTrials.gov NCT01886911.

Conflict of interest statement

Dr. Richard J. Davidson is the founder, president, and serves on the board of directors for the non-profit organization, Healthy Minds Innovations, Inc. No donors, either anonymous or identified, have participated in the design, conduct, or reporting of research results in this manuscript. The remaining authors declare no potential conflict of interest.

Figures

Figure 1
Figure 1
Example timeline for Tenacity game: Players must tap with one finger on the first four outbreath and with two fingers on the fifth outbreath. Here, the first five images demonstrate correct taps, and the last image demonstrates an incorrect tap: a tap with two fingers on the first outbreath of a new cycle.
Figure 2
Figure 2
Playing Tenacity for two weeks increased rs-FC between L dlPFC and L IPC (Fisher’s Z). (A) A cluster in L IPC showing a group effect in the change in L dlPFC-L IPC rs-FC (P < 0.05, whole brain corrected); the red circle represents an independent left IPC ROI [−50, −20, 21] from, chosen to examine relationship of rs-FC and behavior. (B) Tenacity group: increase in L dlPFC-L IPC rs-FC from Time1 to Time2 (P < 0.05, not corrected). (C) FruitNinja group: decrease in L dlPFC-L IPC rs-FC from Time1 to Time2 (P < 0.05, not corrected). (D) Correlation between change in L dlPFC - L IPC rs-FC and change in accuracy on incongruent trials in the ECT task (n = 61).
Figure 3
Figure 3
Increase in white matter integrity in L SLF after two weeks playing Tenacity is associated with improvement in accuracy on ECT task. (A) L SLF John Hopkins University Atlas (B) Group difference in correlation between the change in fractional anisotropy (FA) of L SLF and the change in accuracy on incongruent trials in the ECT task (n = 80). (C) marginally significant correlation between the change in FA of L SLF and the change in L dlPFC- IPC rs-FC in Tenacity group (n = 31).

References

    1. Essential Facts About the Computer and Video Game Industry. Entertainment Software Association, (2019).
    1. Lehnhart A. et al. Teens, Video Games and Civics. Pew Research Center. Internet, Science & Tech, (2008).
    1. Corredor J, Gaydos M, Squire K. Seeing change in time: video games to teach about temporal change in scientific phenomena. J Sci Educ Technol. 2014;23:324–343. doi: 10.1007/s10956-013-9466-4.
    1. De Lisi R, Wolford JL. Improving children’s mental rotation accuracy with computer game playing. J of Genet Psychol. 2002;163:272–282. doi: 10.1080/00221320209598683.
    1. Green CS, Bavelier D. Effect of action video games on the spatial distribution of visuospatial attention. J Exp Psychol Hum Percept Perform. 2006;32:1465–1478. doi: 10.1037/0096-1523.32.6.1465.
    1. Powers KL, Brooks PJ, Aldrich NJ, Palladino MA, Alfieri L. Effects of video-game play on information processing: a meta analytic investigation. Psychon. Bull. Rev. 2013;20:1055–1079. doi: 10.3758/s13423-013-0418-z.
    1. Nikkelen SWC, Valkenburg PM, Huizinga M, Bushman BJ. Media use and ADHD-related behaviors in children and adolescents: A meta-analysis. Developmental Psychology. 2014;50(9):2228–2241. doi: 10.1037/a0037318.
    1. Lutz A, Slagter H, Dunne J, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn Sci. 2008;12(4):163–169. doi: 10.1016/j.tics.2008.01.005.
    1. Levinson DB, Kindy S, Merry H, Davidson RJ. A mind you can count on: validating breath counting as a behavioral measure of mindfulness. Front Psychol. 2014;5:1202. doi: 10.3389/fpsyg.2014.01202.
    1. Tang YY, et al. Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci USA. 2007;104(43):17152–17156. doi: 10.1073/pnas.0707678104.
    1. Tang YY, et al. Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci USA. 2010;107(35):15649–15652. doi: 10.1073/pnas.1011043107.
    1. Tang YY, et al. Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci USA. 2012;109(26):10570–10574. doi: 10.1073/pnas.1207817109.
    1. Lutz A, et al. Mental training enhances attentional stability: neural and behavioral evidence. J Neurosci. 2009;29(42):13418–13427. doi: 10.1523/JNEUROSCI.1614-09.2009.
    1. MacCoon DG, MacLean KA, Davidson RJ, Saron CD, Lutz A. No sustained attention differences in a longitudinal randomized trial comparing mindfulness based stress reduction versus active control. PLOS. 2014;9(6):e97551. doi: 10.1371/journal.pone.0097551.
    1. Allen M, et al. Cognitive-affective neural plasticity following active-controlled mindfulmess Intervention. J Neurosci. 2012;32(44):15601–15610. doi: 10.1523/JNEUROSCI.2957-12.2012.
    1. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc Natl Acad Sci USA. 2007;104(27):11483–11488. doi: 10.1073/pnas.0606552104.
    1. Tang YY, Holzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat Rev Neurosci. 2015;16(4):213–225. doi: 10.1038/nrn3916.
    1. Davidson RJ, Lutz A. Buddha’s brain: neuroplasticity and meditation. IEEE Signal Process Mag. 2008;25(1):176–174. doi: 10.1109/MSP.2008.4431873.
    1. Taylor SJ, Barker LA, Heavey L, McHale S. The longitudinal development of social and executive functions in late adolescence and early adulthood. Front Behav Neurosci. 2015;9:252. doi: 10.3389/fnbeh.2015.00252.
    1. Magar ECE, Phillips LH, Hosie JA. Brief report: cognitive-regulation across the adolescent years. J. Adolesc. 2010;33:779–781. doi: 10.1016/j.adolescence.2009.10.002.
    1. Romine CB, Reynolds CR. A model of the development of frontal lobe functioning: findings from a meta-analysis. Appl Neuropscychol. 2005;12(4):190–201. doi: 10.1207/s15324826an1204_2.
    1. Asato MR, Terwilliger R, Woo J, Luna B. White matter development in adolescence: a DTI study. Cereb Cortex. 2010;20(9):2122–2131. doi: 10.1093/cercor/bhp282.
    1. Rubia K, et al. Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related task of cognitive control. Hum Brain Mapp. 2006;27(12):973–993. doi: 10.1002/hbm.20237.
    1. Wendelken C, Munakata Y, Baym C, Souza M, Bunge SA. Flexible rule use: common neural substrates in children and adults. Dev Cogn Neurosci. 2012;2(3):329–339. doi: 10.1016/j.dcn.2012.02.001.
    1. Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JDE. Immature Frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–311. doi: 10.1016/S0896-6273(01)00583-9.
    1. Olesen PJ, Nagy Z, Westerberg H, Klingberg T. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cogn Brain Res. 2004;18(1):48–57. doi: 10.1016/j.cogbrainres.2003.09.003.
    1. Edin F, Macoveanu J, Olesen PJ, Tegner J, Klingberg T. Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cog Neurosci. 2007;19(5):750–760. doi: 10.1162/jocn.2007.19.5.750.
    1. Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state fMRI. Front Syst Neuroci. 2010;4:21.
    1. Song S, et al. The influence of emotional interference on cognitive control: A meta-analysis of neuroimaging studies using the emotional Stroop task. Sci Rep. 2017;7:2088. doi: 10.1038/s41598-017-02266-2.
    1. Nee DE, Wager TD, Jonides J. Interference resolution: Insight from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1–17. doi: 10.3758/CABN.7.1.1.
    1. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron. 2006;51(6):871–882. doi: 10.1016/j.neuron.2006.07.029.
    1. Strollstorff M, et al. Individual differences in emotion-cognition interactions: emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control. Front Hum Neurosci. 2013;4:327.
    1. McHugo M, Olatunji BO, Zald DH. The emotional attentional blink: what we know so far. Front Hum Neurosci. 2013;7:151. doi: 10.3389/fnhum.2013.00151.
    1. Shackman AJ, et al. The integration of negative affect, pain, and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011;12(3):154–167. doi: 10.1038/nrn2994.
    1. Okon-Singer H, Hendler T, Pessoa L, Shackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Hum Neurosci. 2015;9:1–14. doi: 10.3389/fnhum.2015.00058.
    1. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage. 2005;26:471–479. doi: 10.1016/j.neuroimage.2005.02.004.
    1. Neufang S, Fink GR, Herpertz-Dahlmann B, Willmes K, Konrad K. Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception. Neuroimage. 2008;43:399–409. doi: 10.1016/j.neuroimage.2008.07.039.
    1. Kecskemeti S, et al. MPhRAGE: A technique to simultaneously acquire hundreds of differently contrasted MPRAGE images with applications to quantitative T1 mapping. Magn Reson Med. 2016;75(3):1040–1053. doi: 10.1002/mrm.25674.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73. doi: 10.1006/cbmr.1996.0014.
    1. Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072.
    1. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor Imaging of the brain. Neurotherapeutics. 2007;4(3):316–329. doi: 10.1016/j.nurt.2007.05.011.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Avants, B. B., Tustison, N. J., Song, G. & Gee, J. C. ANTS: Advanced Open-Source Normalization Tools for Neuroanatomy. Penn Image Computing and Science Laboratory (2009).
    1. Woolrich MW, et al. Bayesian analysis of neuroimaging data in FSL. Neuorimage. 2009;45:S173–86. doi: 10.1016/j.neuroimage.2008.10.055.
    1. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Med Imag, IEEE Trans. 2001;20:45–57. doi: 10.1109/42.906424.
    1. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35(3):346–55. doi: 10.1002/mrm.1910350312.
    1. Weissenbacher A, et al. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage. 2009;47(4):1408–16. doi: 10.1016/j.neuroimage.2009.05.005.
    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Mag Res Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409.
    1. Keihaninejad S, et al. An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease. Neuroimage. 2013;72:153–163. doi: 10.1016/j.neuroimage.2013.01.044.
    1. Fonov V, et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54(1):313–327. doi: 10.1016/j.neuroimage.2010.07.033.
    1. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med image anal. 2008;12(1):26–41. doi: 10.1016/j.media.2007.06.004.
    1. Mori, S., Wakana, S., VanZijl, P. C. & Nagae-Poetscher, L. MRI atlas of human white matter. Am SocNeuroradiology, 16 (2005).

Source: PubMed

3
Abonner