Successful ablation of ventricular tachycardia arising from a midmyocardial septal outflow tract site utilizing a simplified bipolar ablation setup

Peter J Sauer, Megan J Kunkel, Duy T Nguyen, Austin Davies, Curtis Lane, Wendy S Tzou, Peter J Sauer, Megan J Kunkel, Duy T Nguyen, Austin Davies, Curtis Lane, Wendy S Tzou

No abstract available

Keywords: Bipolar ablation; Cardiomyopathy; Catheter ablation; Radiofrequency ablation biophysics; Ventricular tachycardia.

Figures

Figure 1
Figure 1
Twelve-lead electrocardiogram morphologies of 3 predominant premature ventricular complexes (PVC1–3) at baseline (white panels) and induced monomorphic ventricular tachycardias (VT1, VT2, blue panels).
Figure 2
Figure 2
A: Electroanatomic bipolar voltage map of the left ventricle (LV), demonstrating normal bipolar voltage except in the outflow tract, just above and below the level of the aortic valve, extending from the septum anteriorly and laterally to the aortomitral continuity (AMC). Sites of earliest activation for ventricular tachycardia (VT) 1 and 2 are highlighted within regions of abnormal bipolar voltage (blue stars). B: Intracardiac echocardiography (ICE) depicts the location of midmyocardial substrate between the right ventricular outflow tract (RVOT) and the left ventricular outflow tract (LVOT). A residual steam pop lesion resulting from unipolar ablation using 50 watts on the right ventricle side of the septum (after high-power unipolar lesions applied to the LV side of the septum failed to render VT noninducible) is also shown. Note that the depth of the lesion does not appear to penetrate to the target of greatest interest. The interventricular septal distance measured at this location was 1.1 cm.
Figure 3
Figure 3
A, B: The T-cable and associated connections utilized to create a bipolar radiofrequency ablation circuit using standard unipolar ablation equipment. (See text for details.) C: The active and ground catheters as displayed on the electroanatomic mapping system, with associated intracardiac electrograms (lower left), and the impedance trend (lower right) during bipolar ablation; 3-dimensional reconstructions of the right ventricular outflow tract (light blue), the left ventricular outflow tract and aortic arch (red), and left ventricle (tan) are displayed in left lateral (left) and cranial right anterior oblique (right) projections.

References

    1. Koruth J.S., Dukkipati S.R., Miller M.A., Neuzil P., d’Avila A., Reddy V.Y. Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm. 2012;9:1932–1941.
    1. Gizurarson S., Spears D., Sivagangabalan G., Farid T., Ha A.C.T., Masse S., Kusha M., Chauhan V.S., Nair K., Harris L., Downar E., Nanthakumar K. Bipolar ablation for deep intramyocardial circuits: Human ex vivo development and in vivo experience. Europace. 2014;16:1684–1688.
    1. Tzou W.S., Rothstein P.A., Cowherd M. Repeat ablation of refractory ventricular arrhythmias in patients with nonischemic cardiomyopathy: impact of midmyocardial substrate and role of adjunctive ablation techniques. J Cardiovasc Electrophysiol. 2018;29:1403–1412.
    1. Sauer W.H., Steckman D.A., Zipse M.M., Tzou W.S., Aleong R.G. High-power bipolar ablation for incessant ventricular tachycardia utilizing a deep midmyocardial septal circuit. HeartRhythm Case Rep. 2015;1:397–400.
    1. Nguyen D.T., Tzou W.S., Brunnquell M., Zipse M.M., Schuller J.L., Zheng L., Aleong R.G., Sauer W.H. Clinical and biophysical evaluation of variable bipolar configurations during radiofrequency ablation for treatment of ventricular arrhythmias. Heart Rhythm. 2016;13:2161.
    1. Teh A.W., Reddy V.Y., Koruth J.S., Miller M.A., Choudry S., d’Avila A., Dukkipati S.R. Bipolar radiofrequency catheter ablation for refractory ventricular outflow tract arrhythmias. J Cardiovasc Electrophysiol. 2014;25:1093–1099.
    1. Yamada T., Doppalapudi H., McElderry H.T., Kay G.N. Idiopathic mitral annular PVCs with multiple breakouts and preferential conduction unmasked by radiofrequency catheter ablation. Pacing Clin Electrophysiol. 2012;35:e112–e115.
    1. Nguyen D.T., Tzou W.S., Sandhu A. Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myocardial substrate refractory to standard ablation. JACC Clin Electrophysiol. 2018;4:1176–1185.
    1. Nguyen D.T., Gerstenfeld E.P., Tzou W.S., Jurgens P.T., Zheng L., Schuller J.L., Zipse M.M., Sauer W.H. Radiofrequency ablation using an open irrigated electrode cooled with half-normal saline. JACC Clin Electrophysiol. 2017;3:1103–1110.
    1. Nguyen D.T., Zipse M., Borne R.T., Zheng L., Tzou W.S., Sauer W.H. Use of tissue electric and ultrasound characteristics to predict and prevent steam-generated cavitation during high-power radiofrequency ablation. JACC Clin Electrophysiol. 2018;4:491–500.
    1. Tokuda M., Kojodjojo P., Tung S.K., Tedrow U.B., Nof E., Inada K., Koplan B.A., Michaud G.F., John R.M., Epstein L.M., Stevenson W.G. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013;2:e000072.

Source: PubMed

3
Abonner