Effects of multidomain versus single-domain training on executive control and memory in older adults: study protocol for a randomized controlled trial

Soledad Ballesteros, Jennifer A Rieker, Julia Mayas, Antonio Prieto, Pilar Toril, María Pilar Jiménez, José Manuel Reales, Soledad Ballesteros, Jennifer A Rieker, Julia Mayas, Antonio Prieto, Pilar Toril, María Pilar Jiménez, José Manuel Reales

Abstract

Background: Previous research suggests that both cognitive training and physical exercise help to maintain brain health and cognitive functions that decline with age. Some studies indicate that combined interventions may produce larger effects than each intervention alone. The aim of this study is to investigate the effects of combined cognitive and physical training compared to cognitive training and physical training alone on executive control and memory functions in healthy older adults.

Objectives: The main objectives of this four-arm randomized controlled trial (RCT) are: to investigate the synergetic effects of a simultaneous, group-based multidomain training program that combines cognitive video-game training with physical exercise, in comparison to those produced by cognitive training combined with physical control activity, physical training combined with cognitive control activity, or a combination of both control activities; to investigate whether event-related potential latencies of the P2 component are shorter and N2 and P3b components assessed in a memory-based task switching task are enhanced after training; and to find out whether possible enhancements persist after a 3-month period without training.

Methods: In this randomized, single-blind, controlled trial, 144 participants will be randomly assigned to one of the four combinations of cognitive training and physical exercise. The cognitive component will be either video-game training (cognitive intervention, CI) or video games not specifically designed to train cognition (cognitive control, CC). The physical exercise component will either emphasize endurance, strength, and music-movement coordination (exercise intervention, EI) or stretching, toning, and relaxation (exercise control, EC).

Discussion: This RCT will investigate the short and long-term effects of multidomain training, compared to cognitive training and physical training alone, on executive control and memory functions in healthy older adults, in comparison with the performance of an active control group.

Trial registration: ClinicalTrials.gov, NCT03823183. Registered on 21 January 2019.

Keywords: Aging; Cognitive training; Executive functions; Memory functions; Multidomain training; Physical exercise; Randomized controlled trial.

Conflict of interest statement

None declared.

Figures

Fig. 1
Fig. 1
Flow chart of the study protocol. d/wk days per week.
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT 2013) diagram illustrating the schedule of enrolment, post allocation, and close-out for all assessments. CC cognitive control, CI cognitive intervention, EC exercise control, EI exercise intervention, ERP event-related potential, LSI Life Satisfaction Index, 6MWT 6-Minute Walk Test, PANAS Positive and Negative Affect Schedule, SPPB Short Physical Performance Battery, TMT Trail Making Test, WMS-III Wechsler Memory Scale—Third Edition

References

    1. Park D, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656.
    1. Reuter-Lorenz PA, Park DC. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol Rev. 2014;24:355–370. doi: 10.1007/s11065-014-9270-9.
    1. Salthouse T. Consequences of age-related cognitive declines. Annual Rev Psychol. 2012;63:201–226. doi: 10.1146/annurev-psych-120710-100328.
    1. Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320. doi: 10.1037/0882-7974.17.2.299.
    1. Rönnlund M, Nyberg L, Bäckman L, Nilsson LG. Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol Aging. 2005;20(1):3–18. doi: 10.1037/0882-7974.20.1.3.
    1. Reimers S, Maylor EA. Task switching across the life span: effects of age on general and specific switch costs. Dev Psychol. 2005;41(4):661–671. doi: 10.1037/0012-1649.41.4.661.
    1. Bopp KL, Verhaeghen P. Aging and verbal memory span: a meta-analysis. J Gerontol B Psychol Sci Soc Sci. 2005;60(5):223–233. doi: 10.1093/geronb/60.5.P223.
    1. Nilsson L. Memory function in normal aging. Acta Neurol Scand Suppl. 2003;107:7–13. doi: 10.1034/j.1600-0404.107.s179.5.x.
    1. Verhaeghen P. Aging and vocabulary scores: a meta-analysis. Psychol Aging. 2003;18(2):332–339. doi: 10.1037/0882-7974.18.2.332.
    1. Bialystok E, Craik F. Lifespan cognition: mechanisms of change. Oxford: Oxford University Press; 2006.
    1. Mireles DE, Charness N. Computational explorations of the influence of structured knowledge on age-related cognitive decline. Psychol Aging. 2002;17(2):245–259. doi: 10.1037/0882-7974.17.2.245.
    1. Fleischman DA, Gabrieli JD. Repetition priming in normal aging and Alzheimer's disease: a review of findings and theories. Psychol Aging. 1998;13(1):88–119. doi: 10.1037/0882-7974.13.1.88.
    1. Mitchell DB, Bruss PJ. Age differences in implicit memory: conceptual, perceptual, or methodological? Psychol Aging. 2003;18(4):807–822. doi: 10.1037/0882-7974.18.4.807.
    1. Ballesteros S, Reales JM. Intact haptic priming in normal aging and Alzheimer’s disease: evidence for dissociable memory systems. Neuropsychologia. 2004;42(8):1063–1070. doi: 10.1016/j.neuropsychologia.2003.12.008.
    1. Sebastián M, Ballesteros S. Effects of normal aging on event-related potentials and oscillatory brain activity during a haptic repetition priming task. Neuroimage. 2012;60(1):7–20. doi: 10.1016/j.neuroimage.2011.11.060.
    1. Ballesteros S, Mayas J, Reales JM. Cognitive function in healthy, aging and mild cognitive impaired older adults. Psicothema. 2004;25:18–24.
    1. Ballesteros S, Reales JM, Mayas J, Heller MA. Selective attention modulates visual and haptic repetition priming: effects on aging and Alzheimers’ disease. Exp Brain Res. 2008;189(4):473–483. doi: 10.1007/s00221-008-1441-6.
    1. Redondo MT, Beltrán-Brotóns JL, Reales JM, Ballesteros S. Word-stem priming and recognition in type 2 diabetes mellitus, Alzheimer’s disease and cognitively healthy older adults. Exp Brain Res. 2015;233:3163–3174. doi: 10.1007/s00221-015-4385-7.
    1. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–1689. doi: 10.1093/cercor/bhi044.
    1. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–839. doi: 10.1038/nrn1201.
    1. Dennis N, Kim H, Cabeza R. Age-related differences in brain activity during true and false memory retrieval. J Cogn Neurosci. 2008;20(8):1390–1402. doi: 10.1162/jocn.2008.20096.
    1. Owsley C, Sloane M, McGwin G, Ball K. Timed instrumental activities of daily living tasks: relationship to cognitive function and everyday performance assessments in older adults. Gerontology. 2002;48(4):254–265. doi: 10.1159/000058360.
    1. Ballesteros S, Bischof GN, Goh JO, Park DC. Neural correlates of conceptual object priming in young and older adults: an event-related fMRI study. Neurobiol Aging. 2013;34(4):1254–1264. doi: 10.1016/j.neurobiolaging.2012.09.019.
    1. Osorio A, Pouthas V, Fay S, Ballesteros S. Ageing affects brain activity in highly educated older adults: an ERP study using a word-stem priming task. Cortex. 2010;46(4):522–534. doi: 10.1016/j.cortex.2009.09.003.
    1. Sebastián M, Reales JM, Ballesteros S. Aging affects event-related potentials and brain oscillations: a behavioral and electrophysiological study using a haptic recognition memory task with familiar objects. Neuropsychologia. 2011;49(14):3967–3980. doi: 10.1016/j.neuropsychologia.2011.10.013.
    1. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28:377–401. doi: 10.1146/annurev.neuro.27.070203.144216.
    1. Li S, Brehmer Y, Shing YL, Werkle-Bergner M, Lindenberger U. Neuromodulation of associative and organizational plasticity across the life span: empirical evidence and neurocomputational modeling. Neurosci Biobehav Rev. 2006;30(6):775–790. doi: 10.1016/j.neubiorev.2006.06.004.
    1. Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659–676. doi: 10.1037/a0020080.
    1. Brehmer Y, Kalpouzos G, Wenger E, Lövden M. Plasticity of brain and cognition in older adults. Psychol Res. 2014;78(6):790–802. doi: 10.1007/s00426-014-0587-z.
    1. Styliadis C, Kartsidis P, Paraskevopoulos E, Ioannides AA, Bamidis PD. Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: an eLORETA controlled study on resting states. Neural Plast. 2015;2015:e172192. doi: 10.1155/2015/172192.
    1. Ball K, Berch DB, Helmer KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288(18):2271–2281. doi: 10.1001/jama.288.18.2271.
    1. Ballesteros S, Kraft E, Santana S, Tziraki CH. Maintaining older brain functionality: a targeted review. Neurosci Biobehav Rev. 2015;55:453–477. doi: 10.1016/j.neubiorev.2015.06.008.
    1. Ballesteros S, Voelcker-Rehage C, Bherer L. Editorial: Cognitive and brain plasticity induced by physical exercise, cognitive training, video games, and combined interventions. Front Hum Neurosci. 2018;12:169. doi: 10.3389/fnhum.2018.00169.
    1. Raz N, Lindenberger U. Life-span plasticity of the brain and cognition: from questions to evidence and back. Neurosci Biobehav Rev. 2013;37:2195–2200. doi: 10.1016/j.neubiorev.2013.10.003.
    1. Stanmore E, Stubbs B, Vancampfort D, de Bruin ED, Firth J. The effects of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2017;78:34–43. doi: 10.1016/j.neubiorev.2017.04.011.
    1. Zhu X, Yin S, Lang M, He R, Li J. The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Res Rev. 2016;31:67–79. doi: 10.1016/j.arr.2016.07.003.
    1. Mozolic JL, Long AB, Morgan AR, Rawley-Payne M, Laurienti PJ. A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiol Aging. 2011;32(4):655–668. doi: 10.1016/j.neurobiolaging.2009.04.013.
    1. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97–101. doi: 10.1038/nature12486.
    1. Basak C, Boot WR, Voss MW, Kramer AF. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765–777. doi: 10.1037/a0013494.
    1. Ballesteros S, Prieto A, Mayas J, Toril P, Pita C, Ponce de León L, Reales JM, Waterworth J. Training older adults with non-action video games enhances cognitive functions that decline with aging: a randomized controlled trial. Front Aging Neurosci. 2014;6:277. doi: 10.3389/fnagi.2014.00277.
    1. Toril P, Reales JM, Mayas J, Ballesteros S. Brain training with video games enhances visuospatial working memory in older adults. Front Aging Neurosci. 2016;10:206.
    1. Ballesteros S, Mayas J, Prieto A, Ruíz-Márquez E, Toril P, Reales JM. Effects of video game training on measures of selective attention and working memory in older adults: Results from a randomized controlled trial. Front Aging Neurosci. 2017;9:354. doi: 10.3389/fnagi.2017.00354.
    1. Powers K, Brooks P, Aldrich N, Palladino M, Alfieri L. Effects of video-game play on information processing: meta-analytic investigation. Psychon Bull Rev. 2013;20:1055–1079. doi: 10.3758/s13423-013-0418-z.
    1. Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11(11):e1001756. doi: 10.1371/journal.pmed.1001756.
    1. Toril P, Reales JM, Ballesteros S. Video game training enhances cognition of older adults: a meta-analytic study. Psychol Aging. 2014;29:706–716. doi: 10.1037/a0037507.
    1. Wang P, Han-Hui Liu HH, Zhu XT, Meng T, Hui-Jie L, Zuo XN. Action video game training for healthy adults: a meta-analytic study. Front Psychol. 2016;7:907.
    1. Vazquez FL, Otero P, Garcıa-Casal JA, Blanco V, Torres AJ, Arrojo M. Efficacy of video game-based interventions for active aging. A systematic literature review and meta-analysis. PLoS One. 2018;13(12):e0208192. doi: 10.1371/journal.pone.0208192.
    1. Sala G, Tatlidil S, Gobet F. Video game training does not enhance cognitive ability: a comprehensive meta-analytic investigation. Psych Bull. 2018;144(2):111–139. doi: 10.1037/bul0000139.
    1. Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, Yaffe K. The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173(9):797–804. doi: 10.1001/jamainternmed.2013.189.
    1. Linde K, Alfermann D. Single versus combined cognitive and physical activity effects on fluid cognitive abilities of healthy older adults: a 4-month randomized controlled trial with follow-up. J Aging Phys Act. 2014;22(3):302–313. doi: 10.1123/JAPA.2012-0149.
    1. Barcelos N, Shah N, Cohen K, Hogan MJ, Mulkerrin E, Arciero PJ, et al. Aerobic and Cognitive Exercise (ACE) pilot study for older adults: executive function improves with cognitive challenge while exergaming. J Int Neuropsychol Soc. 2015;21(10):768–779. doi: 10.1017/S1355617715001083.
    1. Desjardins-Crepeau L, Berryman N, Fraser S, Vu TTM, Kergoat MJ, Li K, et al. Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clin Interv Aging. 2016;11:1287–1299. doi: 10.2147/CIA.S115711.
    1. McDaniel MA, Bugg JM, Waldum ER, Dufault C, Meyer A, Binder EF, et al. Effects of cognitive training with and without aerobic exercise on cognitively demanding everyday activities. Psychol Aging. 2014;29(3):717–730. doi: 10.1037/a0037363.
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–2263. doi: 10.1016/S0140-6736(15)60461-5.
    1. Lauenroth A, Ioannidis AE, Teichmann B. Influence of combined physical and cognitive training on cognition: a systematic review. BMC Geriatr. 2016;16:141. doi: 10.1186/s12877-016-0315-1.
    1. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–130. doi: 10.1111/1467-9280.t01-1-01430.
    1. Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–252. doi: 10.1097/PSY.0b013e3181d14633.
    1. Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9):2268–2295. doi: 10.1016/j.neubiorev.2013.01.028.
    1. Hötting K, Rödder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosc Biobehav Rev. 2013;37:2247–2257. doi: 10.1016/j.neubiorev.2013.04.005.
    1. Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosc. 2014;6:170. doi: 10.3389/fnagi.2014.00170.
    1. Bamidis PD, Vivas AB, Styliadis C, et al. A review of physical and cognitive interventions in aging. Neurosc Biobehav Rev. 2014;44:206–220. doi: 10.1016/j.neubiorev.2014.03.019.
    1. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–1039. doi: 10.1002/hipo.20547.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci. U S A. 2011;108(7):3017–3022. doi: 10.1073/pnas.1015950108.
    1. Kattenstroth JC, Kolankowska I, Kalisch T, Dinse HR. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front Aging Neurosci. 2010;2:31.
    1. Kattenstroth JC, Kalisch T, Holt S, Tegenthoff M, Dinse HR. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front Aging Neurosci. 2013;5:5. doi: 10.3389/fnagi.2013.00005.
    1. Zilidou VI, Frantzidis CA, Romanopoulou ED, et al. Functional re-organization of cortical networks of senior citizens after a 24-week traditional dance program. Front Aging Neurosci. 2018;10:422. doi: 10.3389/fnagi.2018.00422.
    1. Krampe RT, Smolders C, Doumas M. Leisure sports and postural control: can a black belt protect your balance from aging? Psychol Aging. 2014;29(1):95–102. doi: 10.1037/a0035501.
    1. Muiños M, Ballesteros S. Peripheral vision and perceptual asymmetries in young and older martial arts athletes and nonathletes. Atten Percept Psychophys. 2014;76(8):2465–2476. doi: 10.3758/s13414-014-0719-y.
    1. Muiños M, Ballesteros S. Sport can protect dynamic visual acuity from aging: a study with young and older judo and karate martial arts athletes. Atten Percept Psychophys. 2015;77(6):2061–2073. doi: 10.3758/s13414-015-0901-x.
    1. Pons van Dijk G, Huijts M, Lodder J. Cognition improvement in Taekwondo novices over 40. Results from the SEKWONDO Study. Front Aging Neurosci. 2013;5:74. doi: 10.3389/fnagi.2013.00074.
    1. Wayne PM, Walsh JN, Taylor-Piliae RE, et al. Effect of Tai Chi on cognitive performance in older adults: systematic review and meta-analysis. J Am Geriatr Soc. 2014;62(1):25–39. doi: 10.1111/jgs.12611.
    1. Peter C, Kreisner A, Schröter M, Kim H, Bieber G, Öhberg F, Hoshi K, Waterworth EL, Waterworth J, Ballesteros, S. AGNES: Connecting people in a multidimensional way. J Multidimensional User Interfaces. . 10.1007/s12193-013-0118-z.
    1. Ballesteros S, Toril P, Mayas J, Reales JM, Waterworth J. An ICT-mediated social network in support of successful ageing. Gerontechnology. 2014;13(1):39–48. doi: 10.4017/gt.2014.13.1.007.00.
    1. Dause TJ, Kirby ED. Aging gracefully: social engagement joins exercise and enrichment as a key lifestyle factor in resistance to age-related cognitive decline. Neural Regen Res. 2019;14(1):39–42. doi: 10.4103/1673-5374.243698.
    1. Gajewski PD, Ferdinand NK, Kray J, Falkenstein M. Understanding sources of adult age differences in task switching: evidence from behavioral and ERP studies. Neurosci Biobehav Rev. 2018;92:255–275. doi: 10.1016/j.neubiorev.2018.05.029.
    1. Gajewski PD, Freude G, Falkenstein M. Cognitive training sustainably improves executive functioning in middle-aged industry workers assessed by task switching: a randomized controlled ERP study. Front Hum Neurosci. 2017;11:81. doi: 10.3389/fnhum.2017.00081.
    1. Folstein ME, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development a validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49. doi: 10.1016/0022-3956(82)90033-4.
    1. Martínez J, Onis MC, Dueñas H, Aguado C, Colomer C, Luque R. The Spanish version of the Yesavage Abbreviate Questionnaire (GDS) to screen depressive dysfunctions in patients older than 65. Medifam. 2002;12:620–630.
    1. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Res Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149.
    1. Falck RS, Davis JC, Best JR, Crockett RA. Impact of exercise training on physical and cognitive function among older adults. A systematic review and meta-analysis. Neurobiol Aging. 2019;79:119–130. doi: 10.1016/j.neurobiolaging.2019.03.007.
    1. Montgomery AA, Peters TJ, Little P. Design, analysis and representation of factorial randomised controlled trials. BMC Med Res Meth. 2003;3:26. doi: 10.1186/1471-2288-3-26.
    1. Chan S-W, Tetzaff JM, Gotzsche PC, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ Res Meth Report. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Boot WR, Simons DJ, Stothart C, Stutts C. The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Persp Psycol Sci. 2013;8(4):24–254.
    1. Saldanha IJ, Dickersin K, Wang X, Tianjing L. Outcomes in Cochrane systematic reviews addressing four common eye conditions: an evaluation of completeness and comparability. PLoS One. 2014;9(10):e109400. doi: 10.1371/journal.pone.0109400.
    1. Zarin DA, Tse T, Williams RJ, et al. The status of trial registration eleven years after the ICMJE policy. NEJM. 2011;364:852–860. doi: 10.1056/NEJMsa1012065.
    1. Gajewski PD, Wild-Wall N, Schapkin SA, Erdmann U, Freude U, Falkenstein M. Effects of aging and job demands on cognitive flexibility assessed by task switching. Biol Psychol. 2010;85(2):187–199. doi: 10.1016/j.biopsycho.2010.06.009.
    1. Basak C, Boot WR, Voss MW, Kramer AF. Can training in real time strategy video game attenuate cognitive decline in older adults? Psychol Aging. 2008;23(4):765–777. doi: 10.1037/a0013494.
    1. Dahlin E, Nyberg L, Bäckman L, Stigsdotter Neely A. Plasticity of executive functioning in young and older adults: immediate gains, transfer, and long-term maintenance. Psychol Aging. 2008;23(4):720–730. doi: 10.1037/a0014296.
    1. Redondo MT, Beltrán-Brotóns JL, Reales JM, Ballesteros S. Executive functions in patients with Alzheimer’s disease, type 2 diabetes patients and cognitively healthy older adults. Exp Gerontol. 2016;83:47–55. doi: 10.1016/j.exger.2016.07.013.
    1. Weschler Memory Scale (WMS-III) Copyright 1997 by Harcourt Assessment, Inc. San Antonio, TX, USA. Spanish Edition 2004 by TEA Ediciones, SA, Madrid (Spain).
    1. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–1159. doi: 10.1162/neco.1995.7.6.1129.
    1. Jung T, Makeig S, McKeown MJ, Bell AJ, Lee T, Sejnowski TJ. Imaging brain dynamics using dependent component analysis. In: Proc IEEE Inst Electr Electron Eng. 2001 Jul 1 Presented at: Proceedings of the IEEE. Columbus; 2001. p. 1107–22 : . 10.1109/5.939827.
    1. Makeig S, Bell A, Jung T, Sejnowski T. Independent component analysis of electroencephalographic data. Neural Netw. 2003;16(9):1311–1323. doi: 10.1016/j.neunet.2003.08.003.
    1. Makeig S, Jung T, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A. 1997;94(20):10979–10984. doi: 10.1073/pnas.94.20.10979.
    1. Onton J, Delorme A, Makeig S. Frontal midline EEG dynamics during working memory. Neuroimage. 2005;27(2):341–356. doi: 10.1016/j.neuroimage.2005.04.014.
    1. Lee T, Girolami M, Sejnowski TJ. Independent component analysis using an extended infomax algorithm for mixed subGaussian and superGaussian sources. Neural Comput. 1999;11(2):417–441. doi: 10.1162/089976699300016719.
    1. Jung TP, Makeig S, Stensmo M, Sejnowski TJ. Estimating alertness from the EEG power spectrum. IEEE Trans Biomed Eng. 1997;44(1):60–69. doi: 10.1109/10.553713.
    1. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: The PANAS Scales. J Pers Soc Psychol. 1988;54(6):1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Sandín B, Chorot P, Lostao L, Joiner TE, Santed ME, Valiente RM. Escalas PANAS de afecto positivo y negativo: validación factorial y convergencia transcultural. Psicothema. 1999;11:37–51.
    1. Nolla MC, Queral R, Miró J. Las escalas PANAS de afecto positivo y negativo: nuevos datos de su uso en personas mayores. Revista de Psicopatología y Psicología Clínica. 2014;19(1):15–21. doi: 10.5944/rppc.vol.19.num.1.2014.12931.
    1. Neugarten BL, Havighurst RJ, Tobin SS. The measurement of life satisfaction. J Gerontol. 1961;16:134–143. doi: 10.1093/geronj/16.2.134.
    1. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A Short Physical Performance Battery assessing lower-extremity function—association with self-reported disability and prediction of mortality and nursing-home admission. J Gerontol. 1994;49(2):M85–M94. doi: 10.1093/geronj/49.2.M85.
    1. Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-Minute Walk Test. Arch Phys Med Rehabil. 1999;80(7):837–841. doi: 10.1016/S0003-9993(99)90236-8.
    1. ATS Committee on proficiency standards for clinical pulmonary function laboratories ATS statement: guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.

Source: PubMed

3
Abonner