Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury

Rachel L Zemans, Michael A Matthay, Rachel L Zemans, Michael A Matthay

Abstract

Clearance of pulmonary edema fluid is accomplished by active ion transport, predominantly by the alveolar epithelium. Various ion pumps and channels on the surface of the alveolar epithelial cell generate an osmotic gradient across the epithelium, which in turn drives the movement of water out of the airspaces. Here, the mechanisms of alveolar ion and fluid clearance are reviewed. In addition, many factors that regulate the rate of edema clearance, such as catecholamines, steroids, cytokines, and growth factors, are discussed. Finally, we address the changes to the alveolar epithelium and its transport processes during acute lung injury (ALI). Since relevant clinical outcomes correlate with rates of edema clearance in ALI, therapies based on our understanding of the mechanisms and regulation of fluid transport may be developed.

Figures

Figure 1
Figure 1
The distal airway epithelium contains alveolar type I and type II cells and Clara cells, which possess various pumps and channels that achieve clearance of edema fluid. Sodium is transported through channels on the apical membrane and extruded from the cell by the Na+/K+-ATPase located on the basolateral membrane. This transport generates a sodium gradient that drives the transport of water, which is accomplished in part through water channels. AQP, aquaporin; CFTR, cystic fibrosis transmembrane conductance regulator; CNG, cyclic nucleotide-gated; ENaC, epithelial Na+channel. From Matthay and coworkers [3], with permission from the American Physiological Society.
Figure 2
Figure 2
Catecholamines stimulate alveolar fluid clearance – an effect that can be inhibited by β-blockers or amiloride. This suggests that the mechanism by which catecholamines upregulate fluid transport is mediated by β-adrenergic receptors and depends on the transport of sodium through epithelial sodium channels. From Sakuma and coworkers [17], with permission from the American Thoracic Society.
Figure 3
Figure 3
In severe acute lung injury (ALI) the alveolar epithelium is damaged to such an extent that epithelial repair is needed before fluid clearance can be achieved. In contrast, in mild ALI the epithelium and its transport functions are spared, and so pharmacologic stimulation of fluid clearance is possible. If epithelial cell proliferation occurs after injury, either endogenously or due to the administration of mitogens such as keratinocyte growth factor, then fluid clearance may be enhanced. From Berthiaume and coworkers [93], with permission from Thorax.
Figure 4
Figure 4
In patients with acute lung injury, the rate of edema clearance correlates with important clinical outcomes such as survival. From Ware and Matthay [49], with permission from the American Thoracic Society.

References

    1. Allen SJ, Drake RE, Lentz J, Gabel JC, Laine GA. Elevation of superior vena caval pressure increases extravascular lung water after endotoxemia. J Appl Physiol. 1987;62:1006–1009. doi: 10.1063/1.339756.
    1. Matthay MA, Landolt CC, Staub NC. Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol. 1982;53:96–104.
    1. Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600.
    1. Borok Z, Liebler JM, Lubman RL, Foster MJ, Zhou B, Li X, Zabski SM, Kim KJ, Crandall ED. Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L599–L608.
    1. van Scott MR, Davis CW, Boucher RC. Na+ and Cl transport across rabbit nonciliated bronchiolar epithelial (Clara) cells. Am J Physiol Cell Physiol. 1989;256:C893–C901.
    1. Song Y, Fukuda N, Bai C, Ma T, Matthay MA, Verkman AS. Role of aquaporins in the alveolar fluid clearance in neonatal and adult lung, and in oedema formation following acute lung injury: studies in transgenic aquaporin null mice. J Physiol. 2000;525:771–779.
    1. Verkman AS, Matthay MA, Song Y. Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol. 2000;278:L867–L879.
    1. Dobbs LG, Gonzalez R, Matthay MA, Carter EP, Allen L, Verkman AS. Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Proc Natl Acad Sci USA. 1998;95:2991–2996. doi: 10.1073/pnas.95.6.2991.
    1. Fang X, Fukuda N, Barbry P, Sartori C, Verkman AS, Matthay MA. Novel role for CFTR in fluid absorption from the distal airspaces of the lung. J Gen Physiol. 2002;119:199–207. doi: 10.1085/jgp.119.2.199.
    1. Jiang X, Ingbar DN, O'Grady SM. Adrenergic stimulation of Na+ transport across adult alveolar epithelial cells: effects on Cl- channel activation and transport function in cultures with an apical air interface. J Membr Biol. 2001;181:195–204.
    1. Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic visualization of β-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985;132:541–547.
    1. Norlin A, Finley N, Abedinpour P, Folkesson HG. Alveolar liquid clearance in the anesthetized ventilated guinea pig. Am J Physiol. 1998;274:L235–L243.
    1. Tibayan FA, Chesnutt AN, Folkesson HG, Eandi J, Matthay MA. Dobutamine increases alveolar liquid clearance in ventilated rats by beta-2 receptor stimulation. Am J Respir Crit Care Med. 1997;156:438–444.
    1. Sakuma T, Hida M, Nambu Y, Osanai K, Toga H, Takahashi K, Ohya N, Inoue M, Watanabe Y. Beta 1-adrenergic agonist is a potent stimulator of alveolar fluid clearance in hyperoxic rat lungs. Jpn J Pharmacol. 2001;85:161–166. doi: 10.1254/jjp.85.161.
    1. Berthiaume Y, Staub NC, Matthay MA. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest. 1987;79:335–343.
    1. Crandall ED, Heming TH, Palombo RL, Goodman BE. Effect of terbutaline on sodium transport in isolated perfused rat lung. J Appl Physiol. 1986;60:289–294.
    1. Sakuma T, Okaniwa G, Nakada T, Nishimura T, Fujimura S, Matthay MA. Alveolar fluid clearance in the resected human lung. Am J Respir Crit Care Med. 1994;150:305–310.
    1. Goodman BE, Anderson JL, Clemens JW. Evidence for regulation of sodium transport from airspace to vascular space by cAMP. Am J Physiol Lung Cell Mol Physiol. 1989;257:L86–L93.
    1. Minakata Y, Suzuki S, Grygorczyk C, Dagenais A, Berthiaume Y. Impact of β-adrenergic agonist on Na channel and Na/K ATPase expression in alveolar type II cells. Am J Physiol. 1998;275:L414–L422.
    1. Saldias FJ, Comellas A, Ridge KM, Lecuona E, Sznajder JI. Iso-proterenol improves ability of lung to clear edema in rats exposed to hyperoxia. J Appl Physiol. 1999;87:30–35.
    1. Yue G, Russell WJ, Benos DJ, Jackson RM, Olman MA, Matalon S. Increased expression and activity of sodium channels in alveolar type II cells of hyperoxic rats. Proc Natl Acad Sci USA. 1995;92:8418–8422.
    1. Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na channel (ENaC) requires CFTR Cl channel function. Nature. 1999;402:301–304. doi: 10.1038/46297.
    1. Dagenais A, Denis C, Vives MF, Girouard S, Masse C, Nguyen T, Yamagat T, Grygorczyk C, Kothary R, Berthiaume Y. Modulation of α-ENaC and α 1-Na+-K+-ATPase by cAMP and dexamethasone in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;281:L217–L230.
    1. Noda M, Suzuki S, Tsubochi H, Sugita M, Maeda S, Kobayashi S, Kubo H, Kondo T. Single dexamethasone injection increases alveolar fluid clearance in adult rats. Crit Care Med. 2003;31:1183–1189. doi: 10.1097/01.CCM.0000059640.77535.29.
    1. Olivera WG, Ciccolella DE, Barquin N, Ridge KM, Rutschman DH, Yeates DB, Sznajder JI. Aldosterone regulates Na, K-ATPase and increases lung edema clearance in rats. Am J Respir Crit Care Med. 2000;161:567–573.
    1. Jain L, Chen XJ, Ramosevac S, Brown LA, Eaton DC. Expression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. Am J Physiol Lung Cell Mol Physiol. 2001;280:L646–L658.
    1. O'Brodovich H, Canessa C, Ueda J, Rafii B, Rossier BC, Edelson J. Expression of the epithelial Na+ channel in the developing rat lung. Am J Physiol. 1993;265:C491–C496.
    1. Folkesson HG, Norlin A, Wang Y, Abedinpour P, Matthay MA. Dexamethasone and thyroid hormone pretreatment upregulate alveolar epithelial fluid clearance in adult rats. J Appl Physiol. 2000;88:416–424. doi: 10.1063/1.373675.
    1. Sugahara K, Freidenberg GR, Mason RJ. Insulin binding and effects on glucose and transepithelial transport by alveolar type II cells. Am J Physiol. 1984;247:C472–C477.
    1. Tohda H, Marunaka Y. Insulin-activated amiloride-blockable nonselective cation and Na+ channels in the fetal distal lung epithelium. Gen Pharmacol. 1995;26:755–763. doi: 10.1016/0306-3623(94)00247-K.
    1. Sznajder JI, Ridge KM, Yeates DB, Ilekis J, Olivera W. Epidermal growth factor increases lung liquid clearance in rat lungs. J Appl Physiol. 1998;85:1004–1010.
    1. Borok Z, Hami A, Danto SI, Lubman RL, Kim KJ, Crandall ED. Effects of EGF on alveolar epithelial junctional permeability and active sodium transport. Am J Physiol. 1996;270:L559–L565.
    1. Folkesson HG, Pittet JF, Nitenberg G, Matthay MA. Transforming growth factor-alpha increases alveolar liquid clearance in anesthetized rats. Am J Physiol. 1996;271:L236–L244.
    1. Wang Y, Folkesson HG, Jayr C, Ware LB, Matthay MA. Alveolar epithelial fluid transport can be simultaneously upregulated by both KGF and beta-agonist therapy. J Appl Physiol. 1999;87:1852–1860.
    1. Guery BP, Mason CM, Dobard EP, Beaucaire G, Summer WR, Nelson S. Keratinocyte growth factor increases transalveolar sodium resabsorption in normal and injured rat lungs. Am J Respir Crit Care Med. 1994;155:1777–1784.
    1. Borok Z, Danto SI, Dimen LL, Zhang XL, Lubman RL. Na+-K+-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF. Am J Physiol. 1998;274:L149–L158.
    1. Dohi M, Hasegawa T, Yamamoto K, Marshall B. Hepatocyte growth factor attenuates collagen accumulation in murine model of pulmonary fibrosis. Am J Respir Crit Care Med. 2000;162:2302–2307.
    1. Olivera W, Ridge K, Wood LD, Sznajder JI. ANF decreases active sodium transport and increases alveolar epithelial permeability in rats. J Appl Physiol. 1993;75:1581–1586.
    1. Molliex S, Crestani B, Dureuil B, Bastin J, Rolland C, Aubier M, Desmonts JM. Effects of halothane on surfactant biosynthesis by rat alveolar type II cells in primary culture. Anesthesiology. 1994;81:668–676.
    1. Planes C, Escoubet B, Blot-Chabaud M, Friedlander G, Farman N, Clerici C. Hypoxia downregulates expression and activity of epithelial sodium channels in rat alveolar epithelial cells. Am J Respir Cell Mol Biol. 1997;17:508–518.
    1. Guo Y, Duvall MD, Crow JP, Matalon S. Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers. Am J Physiol. 1998;274:L369–L377.
    1. Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest. 1991;88:864–875.
    1. Pittet JF, Wiener-Kronish JP, McElroy MC, Folkesson HG, Matthay MA. Stimulation of lung epithelial liquid clearance by endogenous release of catecholamines in septic shock in anesthetized rats. J Clin Invest. 1994;94:663–671.
    1. Borjesson A, Norlin A, Wang X, Anderson R, Folkesson HG. TNF-alpha stimulates alveolar liquid clearance during intestinal ischemia-reperfusion in rats. Am J Physiol Lung Cell Mol Physiol. 2000;278:L3–L12.
    1. Nici L, Dowin R, Gilmore-Hebert M, Jamieson JD, Ingbar DH. Upregulation of rat lung Na-KATPase during hyperoxic injury. Am J Physiol. 1991;261:L307–L314.
    1. Olivera W, Ridge K, Wood LD, Sznajder JI. Active sodium transport and alveolar epithelial Na-KATPase increase during subacute hyperoxia in rats. Am J Physiol. 1994;266:L577–L584.
    1. Folkesson HG, Nitenberg G, Oliver BL, Jayr C, Albertine KH, Matthay MA. Upregulation of alveolar epithelial fluid transport after subacute lung injury in rats from bleomycin. Am J Physiol. 1998;275:L478–L490.
    1. Saldias FJ, Lecuona E, Comellas AP, Ridge KM, Sznajder JI. Dopamine restores lung ability to clear edema in rats exposed to hyperoxia. Am J Respir Crit Care Med. 1999;159:626–633.
    1. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163:1376–1383.
    1. Carter EP, Wangensteen OD, O'Grady SM, Ingbar DH. Effects of hyperoxia on type II cell Na-KATPase function and expression. Am J Physiol. 1997;272:L542–L551.
    1. Planes C, Friedlander G, Loiseau A, Amiel C, Clerici C. Inhibition of Na-K-ATPase activity after prolonged hypoxia in an alveolar epithelial cell line. Am J Physiol. 1996;271:L70–L78.
    1. Suzuki S, Noda M, Sugita M, Ono S, Koike K, Fujimura S. Impairment of transalveolar fluid transport and lung Na+-K+-ATPase function by hypoxia in rats. J Appl Physiol. 1999;87:962–968.
    1. Clerici C, Matthay MA. Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol. 2000;88:1890–1896.
    1. Matalon S, O'Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol. 1999;61:627–661. doi: 10.1146/annurev.physiol.61.1.627.
    1. Pittet JF, Lu LN, Morris DG, Modelska K, Welch WJ, Carey HV, Roux J, Matthay MA. Reactive nitrogen species inhibit alveolar epithelial fluid transport after hemorrhagic shock in rats. J Immunol. 2001;166:6301–6310.
    1. Lecuona E, Saldias F, Comellas A, Ridge K, Guerrero C, Sznajder JI. Ventilator-associated lung injury decreases lung ability to clear edema in rats. Am J Respir Crit Care Med. 1999;159:603–609.
    1. Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA. High tidal volume ventilation induces NOS2 and impairs cAMP-dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol. 2003;284:L791–L798.
    1. Sakuma T, Tsukano C, Ishigaki M, Nambu Y, Osanai K, Toga H, Takahashi K, Ohya N, Kurihara T, Nishio M, Matthay MA. Lung deflation impairs alveolar epithelial fluid transport in ischemic rabbit and rat lungs. Transplantation. 2000;69:1785–1793. doi: 10.1097/00007890-200005150-00010.
    1. Han X, Fink MP, Uchiyama T, Yang R, Delude RL. Increased iNOS activity is essential for pulmonary epithelial tight junction dysfunction in endotoxemic mice. Am J Physiol Lung Cell Mol Physiol. 2004;286:L259–L267. doi: 10.1152/ajplung.00187.2003.
    1. Pittet JF, Wiener-Kronish JP, Serikov V, Matthay MA. Resistance of the alveolar epithelium to injury from septic shock in sheep. Am J Respir Crit Care Med. 1995;151:1093–1100.
    1. Ware LB, Golden JA, Finkbeiner WE, Matthay MA. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation. Am J Respir Crit Care Med. 1999;159:980–988.
    1. Olivera WG, Ridge KM, Sznajder JI. Lung liquid clearance and Na, K-ATPase during acute hyperoxia and recovery in rats. Am J Respir Crit Care Med. 1995;152:1229–1234.
    1. Pittet JF, Brenner TJ, Modelska K, Matthay MA. Alveolar liquid clearance is increased by endogenous catecholamine in hemorrhagic shock in rats. J Appl Physiol. 1996;81:830–837.
    1. Garat C, Rezaiguia S, Meignan M, D'Ortho MP, Harf A, Matthay MA, Jayr C. Alveolar endotoxin increases alveolar liquid clearance in rats. J Appl Physiol. 1995;79:2021–2028.
    1. Garat C, Meignan M, Matthay MA, Luo DF, Jayr C. Alveolar epithelial fluid clearance mechanisms are intact after moderate hyperoxic lung injury in rats. Chest. 1997;111:1381–1388.
    1. Lasnier JM, Wangensteen OD, Schmitz LS, Gross CR, Ingbar DH. Terbutaline stimulates alveolar fluid resorption in hyperoxic lung injury. J Appl Physiol. 1996;81:1723–1729.
    1. Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U. Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med. 2002;346:1631–1636. doi: 10.1056/NEJMoa013183.
    1. Matthay MA, Folkesson HG, Campagna A, Kheradmand F. Alveolar epithelial barrier and acute lung injury. New Horiz. 1993;1:613–22.
    1. Atabai K, Ware LB, Snider ME, Koch P, Daniel B, Nuckton TJ, Matthay MA. Aerosolized beta2-adrenergic agonists achieve therapeutic levels in the pulmonary edema fluid of ventilated patients with acute respiratory failure. Intensive Care Med. 2002;28:705–711. doi: 10.1007/s00134-002-1282-x.
    1. Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis. 1988;138:62–68.
    1. Annane D, Sebille V, Charpentier C, Bollaert P, Francois B, Korach J, Capellier G, Cohen Y, Azoulay E, Troche E, Chaumet-Riffaut P, Bellissant Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871. doi: 10.1001/jama.288.7.862.
    1. Modelska K, Pittet JF, Folkesson HG, Broaddus VC, Matthay MA. Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. Am J Respir Crit Care Med. 1999;160:1450–1456.
    1. Laffon M, Pittet JF, Modelska K, Matthay MA, Young DM. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med. 1999;160:1443–1449.
    1. Rezaiguia S, Garat C, Delclaux C, Meignan M, Fleury J, Legrand P, Matthay MA. Acute bacterial pneumonia in rats increases alveolar epithelial fluid clearance by a tumor necrosis factor-alpha dependent mechanism. J Clin Invest. 1997;99:325–335.
    1. Fukuda N, Jayr C, Lazrak A, Wang Y, Lucas R, Matalon S, Matthay MA. Mechanisms of TNF-α stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol. 2001;280:L1258–L1265.
    1. Sloniewsky DE, Ridge KM, Adir Y, Fries FP, Briva A, Sznajder JI, Sporn PH. Leukotriene D4 activates alveolar epithelial Na, K-ATPase and increases alveolar fluid clearance. Am J Respir Crit Care Med. 2004;169:407–412. doi: 10.1164/rccm.200304-472OC.
    1. Debs RJ, Fuchs HJ, Philip R, Montgomery AB, Brunette EN, Liggitt D, Patton JS, Shellito JE. Lung specific delivery of cytokines induces sustained pulmonary and systemic immunomodulation in rats. J Immunol. 1988;140:3482–3488.
    1. Guo J, Yi ES, Havill AM, Sarosi I, Whitcomb L, Yin S, Middleston SC, Piguet P, Ulich TR. Intravenous keratinocyte growth factor protects against experimental pulmonary injury. Am J Physiol. 1998;275:L800–L805.
    1. Yi ES, Williams ST, Lee H, Malicki DM, Chin EM, Yin S, Tarpley J, Ulich TR. Keratinocyte growth factor ameliorates radiation-and bleomycin-induced lung injury and mortality. Am J Pathol. 1996;149:1963–1970.
    1. Viget NB, Guery BP, Ader F, Neviere R, Alfandari S, Creuzy C, Roussel-Delvallez M, Foucher C, Mason CM, Beaucaire G, Pittet JF. Keratinocyte growth factor protects against Pseudomonas aeruginosa-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1199–L1209.
    1. Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol. 2002;282:L924–L940.
    1. Verghese GM, McCormick-Shannon K, Mason RJ, Matthay MA. Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury. Am J Respir Crit Care Med. 1998;158:386–394.
    1. Chesnutt AN, Kheradmand F, Folkesson HG, Alberts M, Matthay MA. Soluble transforming growth factor-alpha is present in the pulmonary edema fluid of patients with acute lung injury. Chest. 1997;111:652–656.
    1. Byron PR, Patton JS. Drug delivery via the respiratory tract. J Aerosol Med. 1994;7:49–75.
    1. The Acute Respiratory Distress Syndrome Network Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–249.
    1. Eisner MD, Parsons P, Matthay MA, Ware L, Greene K, Acute Respiratory Distress Syndrome Network Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983–988. doi: 10.1136/thorax.58.11.983.
    1. Factor P, Dumasius V, Saldias F, Brown LA, Sznajder JI. Adenovirus-mediated transfer of an Na+/K+-ATPase beta1 subunit gene improves alveolar fluid clearance and survival in hyperoxic rats. Hum Gene Ther. 2000;11:2231–2242. doi: 10.1089/104303400750035753.
    1. Dumasius V, Sznajder JI, Azzam ZS, Boja J, Mutlu GM, Maron MB, Factor P. Beta2-adrenergic receptor overexpression increases alveolar fluid clearance and responsiveness to endogenous catecholamines in rats. Circ Res. 2001;89:907–914.
    1. Stern M, Ulrich K, Robinson C, Copeland J, Griesenbach U, Masse C, Cheng S, Munkonge F, Geddes D, Berthiaume Y, Alton E. Pretreatment with cationic lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo augments resolution of high permeability pulmonary oedema. Gene Ther. 2000;7:960–966. doi: 10.1038/sj.gt.3301193.
    1. Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R, Krause DS. Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow. Exp Hematol. 2002;30:1333–1338. doi: 10.1016/S0301-472X(02)00931-1.
    1. Matthay MA, Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis. 1990;142:1250–1257.
    1. Berthiaume Y, Lesur O, Dagenais A. Treatment of adult respiratory distress syndrome: plea for rescue therapy of the alveolar epithelium. Thorax. 1999;54:150–160.

Source: PubMed

3
Abonner