Adherence to roflumilast under dose-escalation strategy in Korean patients with COPD

Tai Sun Park, Jieun Kang, Jae Seung Lee, Yeon-Mok Oh, Sang-Do Lee, Sei Won Lee, Tai Sun Park, Jieun Kang, Jae Seung Lee, Yeon-Mok Oh, Sang-Do Lee, Sei Won Lee

Abstract

Background: Frequent development of adverse events and consequent low adherence are major barriers in the wide use of roflumilast. Asian patients may be more susceptible to adverse events due to low BMI. In this study, we aimed to determine if a dose-escalation strategy is useful to improve the drug adherence rate.

Methods: This was a randomized, prospective, open-label, single-blind study to compare the adherence rate to roflumilast according to a dose-escalation or conventional dose strategy in patients with COPD in South Korea. Patients were randomized into two groups (1:1), either roflumilast 500 μg once daily for 12 weeks or roflumilast 250 μg once daily for 4 weeks, and then 500 μg for 12 weeks. The primary outcome was the percentage of patients prematurely discontinuing roflumilast due to adverse events.

Results: A total of 55 patients were randomly assigned to either a conventional-dose group (n=28) or a dose-escalation group (n=27). Discontinuation rates of roflumilast due to adverse events were 46.4% for the conventional-dose group and 59.3% for the dose-escalation group. The median time to discontinuation was not different between groups (58 days for the conventional-dose group, 56 days for the dose-escalation group, p=0.629). In a multivariate analysis, older age was a significant risk factor for drug discontinuation.

Conclusion: High discontinuation rates of roflumilast were observed in both groups regardless of the dose-escalation strategy. The frequent discontinuation suggests that the dose-escalation strategy may not be useful in Asian patients.

Clinical trial: This study is registered at www.ClinicalTrials.gov with identifier number NCT02018432.

Keywords: COPD; adherence; roflumilast.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
Adherence rates during the study period.
Figure 3
Figure 3
(A) Percentage of the patients with adverse events in the conventional-dose group and (B) percentage of the patients with adverse events in the dose-escalation group.

References

    1. Beghe B, Rabe KF, Fabbri LM. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med. 2013;188(3):271–278. doi: 10.1164/rccm.201301-0021PP.
    1. Rennard SI, Calverley PM, Goehring UM, Bredenbroker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast–the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18. doi: 10.1186/1465-9921-12-122.
    1. Martinez FJ, Calverley PM, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385(9971):857–866. doi: 10.1016/S0140-6736(14)62410-7.
    1. Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):154–161. doi: 10.1164/rccm.200610-1563OC.
    1. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1418–1422. doi: 10.1164/ajrccm.157.5.9709032.
    1. Seneff MG, Wagner DP, Wagner RP, Zimmerman JE, Knaus WA. Hospital and 1-year survival of patients admitted to intensive care units with acute exacerbation of chronic obstructive pulmonary disease. JAMA. 1995;274(23):1852–1857.
    1. Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60(11):925–931. doi: 10.1136/thx.2005.040527.
    1. Bateman ED, Rabe KF, Calverley PM, et al. Roflumilast with long-acting beta2-agonists for COPD: influence of exacerbation history. Eur Respir J. 2011;38(3):553–560. doi: 10.1183/09031936.00178710.
    1. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374(9691):685–694. doi: 10.1016/S0140-6736(09)61255-1.
    1. Hwang H, Shin JY, Park KR, et al. Effect of a dose-escalation regimen for improving adherence to roflumilast in patients with chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul) 2015;78(4):321–325. doi: 10.4046/trd.2015.78.4.321.
    1. Munoz-Esquerre M, Diez-Ferrer M, Monton C, et al. Roflumilast added to triple therapy in patients with severe COPD: a real life study. Pulm Pharmacol Ther. 2015;30:16–21. doi: 10.1016/j.pupt.2014.10.002.
    1. Michalski JM, Golden G, Ikari J, Rennard SI. PDE4: a novel target in the treatment of chronic obstructive pulmonary disease. Clin Pharmacol Ther. 2012;91(1):134–142. doi: 10.1038/clpt.2011.266.
    1. Pinner NA, Hamilton LA, Hughes A. Roflumilast: a phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther. 2012;34(1):56–66. doi: 10.1016/j.clinthera.2011.12.008.
    1. Calverley PM, Martinez FJ, Fabbri LM, Goehring UM, Rabe KF. Does roflumilast decrease exacerbations in severe COPD patients not controlled by inhaled combination therapy? The REACT study protocol. Int J Chron Obstruct Pulmon Dis. 2012;7:375–382. doi: 10.2147/COPD.S31100.
    1. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374(9691):695–703. doi: 10.1016/S0140-6736(09)61252-6.
    1. Gupta S. Side-effects of roflumilast. Lancet. 2012;379(9817):710–711. doi: 10.1016/S0140-6736(12)60304-3. author reply 711–712.
    1. Watz H, Bagul N, Rabe KF, et al. Use of a 4-week up-titration regimen of roflumilast in patients with severe COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:813–822. doi: 10.2147/COPD.S154012.
    1. Lim JU, Lee JH, Kim JS, et al. Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients. Int J Chron Obstruct Pulmon Dis. 2017;12:2465–2475. doi: 10.2147/COPD.S141295.
    1. Kim KH, Kang HS, Kim JS, Yoon HK, Kim SK, Rhee CK. Risk factors for the discontinuation of roflumilast in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:3449–3456. doi: 10.2147/COPD.S143967.
    1. Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbroker D, Bethke TD. Roflumilast–an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366(9485):563–571. doi: 10.1016/S0140-6736(05)67100-0.
    1. Lee JS, Hong YK, Park TS, Lee SW, Oh YM, Lee SD. Efficacy and safety of roflumilast in Korean patients with COPD. Yonsei Med J. 2016;57(4):928–935. doi: 10.3349/ymj.2016.57.4.928.
    1. Lee SD, Hui DS, Mahayiddin AA, et al. Roflumilast in Asian patients with COPD: A randomized placebo-controlled trial. Respirology. 2011;16(8):1249–1257. doi: 10.1111/j.1440-1843.2011.02038.x.
    1. Liu D-Y, Wang Z-G, Gao Y, et al. Effect and safety of roflumilast for chronic obstructive pulmonary disease in Chinese patients. Medicine (Baltimore) 2018;97(7):e9864. doi: 10.1097/MD.0000000000009864.
    1. Joo H, Han D, Lee JH, Rhee CK. Incidence of adverse effects and discontinuation rate between patients receiving 250 micrograms and 500 micrograms of roflumilast: A comparative study. Tuberc Respir Dis (Seoul) 2018;81(4):299–304. doi: 10.4046/trd.2018.0015.
    1. Zheng J, Yang J, Zhou X, et al. Roflumilast for the treatment of COPD in an Asian population: a randomized, double-blind, parallel-group study. Chest. 2014;145(1):44–52. doi: 10.1378/chest.13-1252.
    1. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 2008;21(1):70–83. doi: 10.1021/tx700079z.
    1. Lahu G, Nassr N, Hünnemeyer A. Pharmacokinetic evaluation of roflumilast. Expert Opin Drug Metab Toxicol. 2011;7(12):1577–1591. doi: 10.1517/17425255.2011.632409.
    1. Rabe KF. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br J Pharmacol. 2011;163(1):53–67. doi: 10.1111/j.1476-5381.2011.01218.x.
    1. Lee JS, Cheong HS, Kim LH, et al. Screening of genetic polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J Physiol Pharmacol. 2013;17(6):479–484. doi: 10.4196/kjpp.2013.17.6.479.

Source: PubMed

3
Abonner