How microorganisms use hydrophobicity and what does this mean for human needs?

Anna Krasowska, Karel Sigler, Anna Krasowska, Karel Sigler

Abstract

Cell surface hydrophobicity (CSH) plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

Keywords: adhesion; bioremediation; cell surface; hydrophobicity; pathogens.

References

    1. Abbasnezhad H., Gray M., Foght J. M. (2011). Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl. Microbiol. Biotechnol. 92, 653–675 10.1007/s00253-011-3589-4
    1. Absolom D., Lamberti F., Policova Z., Zingg W., van Oss C., Neumann A. (1983). Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46, 90–97
    1. Adav S., Lee D., Show K., Tay J. (2005). Microstructural optimization of wastewater treatment by aerobic granular sludge, in Aerobic Granular Sludge, eds Bathe S., de Kreuk M. K., McSwain B., Schwarzenbeck N. (London: IWA Publishing; ), 213–219
    1. Adav S., Lee D., Show K., Tay J. (2008). Aerobic granular sludge: recent advances. Biotechnol. Adv. 26, 411–423 10.1016/j.biotechadv.2008.05.002
    1. Akama H., Kanemaki M., Yoshimura M., Tsukihara T., Kashiwagi T., Yoneyama H., et al. (2004). Crystal structure of the drug discharge outer membrane protein OprM of Pseudomonas aeruginosa, dual modes of membrane anchoring and occluded cavity end. J. Biol. Chem. 279, 52816–52819 10.1074/jbc.C400445200
    1. Aoki W., Kitahara N., Miura N., Morisaka H., Kuroda K., Ueda M. (2012). Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Imm. Med. Microbiol. 65, 121–124 10.1111/j.1574-695X.2012.00941.x
    1. Archer N., Mazaitis M., Costerton J., Leid J., Powers M., Shirtliff M. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2, 445–459 10.4161/viru.2.5.17724
    1. Arciola C., Campoccia D., Speziale P., Montanaro L., Costerton J. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967–5982 10.1016/j.biomaterials.2012.05.031
    1. Auger S., Ramarao N., Faille C., Fouet A., Aymerich S., Gohar M. (2009). Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 75, 6616–6618 10.1128/AEM.00155-09
    1. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L., et al. (2012a). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78, 6217–6224 10.1128/AEM.01525-12
    1. Baumgarten T., Vazquez J., Bastisch C., Veron W., Feuilloley M., Nietzsche S., et al. (2012b). Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl. Microbiol. Biotechnol. 93, 837–845 10.1007/s00253-011-3442-9
    1. Beaussart A., Alsteens D., El-Kirat-Chatel S., Lipke P., Kucharíkova S., Van Dijck P., et al. (2012). Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. ACS Nano. 6, 10950–10964 10.1021/nn304505s
    1. Borecká-Melkusová S., Bujdaková H. (2008). Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment. Can. J. Microbiol. 54, 718–724 10.1139/W08-060
    1. Bos R., van der Mei H., Busscher H. (1999). Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230
    1. Brauner A., Katouli M., Tullus K., Jacobson S. (1990). Cell surface hydrophobicity, adherence to HeLa cell cultures and haemagglutination pattern of pyelonephritogenic Escherichia coli strains. Epid. Infect. 105, 255–263 10.1017/S0950268800047865
    1. Brooks J., Flint S. (2008). Biofilms in the food industry: problems and potential solutions. Int. J. Food Sci. Technol. 43, 2163–2176 10.1111/j.1365-2621.2008.01839.x
    1. Bujdakova H., Didiasova M., Drahovska H., Cernakova L. (2013). Role of cell surface hydrophobicity in Candida albicans biofilm. Central Europ. J. Biol. 8, 259–262 10.2478/s11535-013-0136-y
    1. Busscher H., Weerkamp A., Van der Mei H., Van Pelt A., De Jong H., Arends J. (1984). Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol. 48, 980–983
    1. Cerca N., Pier G., Vilanova M., Oliveira R., Azeredo J. (2005). Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156, 506–514 10.1016/j.resmic.2005.01.007
    1. Chakarborty S., Mukhejri S., Murkherji S. (2010). Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf. B Biointerfaces 78, 102–108 10.1016/j.colsurfb.2010.02.019
    1. Cisar J., Kolenbrander P., McIntire F. (1979). Specifcity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect. Immun. 24, 742–752
    1. Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersm F., et al. (2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726 10.1101/gad.264303
    1. Corpe W. (1980). Microbial surface components involved in adsorption of microorganisms onto surfaces, in Adsorption of Microorganisms to Surfaces, eds Bitton G., Marshall K. (New York, NY: John Wiley & Sons; ), 105–44
    1. Dea B., Sampson J., Ades E., Huebner R., Jue D., Johnson S., et al. (2000). Purification and characterization of Streptococcus pneumoniae palmitoylated pneumococcal surface adhesin A expressed in Escherichia coli. Vaccine 18, 1811–1821 10.1016/S0264-410X(99)00481-8
    1. Deatherage B., Cookson B. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Imm. 80, 1948–1957 10.1128/IAI.06014-11
    1. de Carvalho C., da Cruz A., Pons M., Pinheiro H., Cabral J., da Fonseca M., et al. (2004). Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc. Res. Tech. 64, 215–222 10.1002/jemt.20061
    1. Doyle R. (2000). Contribution of the hydrophobic effect to microbial infection. Microb. Infect. 2, 391–400 10.1016/S1286-4579(00)00328-2
    1. Dranginis A., Rauceo J., Coronado J., Lipke P. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 71, 282–289 10.1128/MMBR.00037-06
    1. Feingold K. (2007). Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid. Res. 48, 2531–2546 10.1194/jlr.R700013-JLR200
    1. Feofilova E. (2010). The fungal cell wall: modern concepts of its composition and biological function. Mikrobiologiia 79, 711–720 10.1134/S0026261710060019
    1. Ferreira L., Zumbuehl A. (2009). Non-leaching surfaces capable of killing microorganisms on contact. J. Mater. Chem. 19, 7796–7806 10.1039/b905668h
    1. Fortuna J., Martín-Davila P., de la Pedrosa E., Pintado V., Cobo J., Fresco G., et al. (2012). Emerging trends in candidemia: a higher incidence but a similar outcome. J. Infect. 65, 64–70 10.1016/j.jinf.2012.02.011
    1. Frirdich E., Whitfield C. (2005). Review: lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J. Endotoxin Res. 11, 133–144 10.1177/09680519050110030201
    1. Fukazawa Y., Kagaya K. (1997). Molecular bases of adhesion of Candida albicans. Med. Mycol. 35, 87–99 10.1080/02681219780000971
    1. Giaouris E., Chapot-Chartier M., Briandet R. (2009). Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int. J. Food. Microbiol. 131, 2–9 10.1016/j.ijfoodmicro.2008.09.006
    1. Gibbons R., Nygaard M. (1970). Interbacterial aggregation of plaque bacteria. Arch. Oral Biol. 15, 1397–1400 10.1016/0003-9969(70)90031-2
    1. Gilbert P., Evans D. J., Evans E., Duguid I. G., Brown M. R. W. (1991). Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. App. Bacteriol. 71, 72–77 10.1111/j.1365-2672.1991.tb04665.x
    1. Goulter R., Gentle I., Dykes G. (2009). Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett. App. Microbiol. 49, 1–7 10.1111/j.1472-765X.2009.02591.x
    1. Hazen K. (2004). Relationship between expression of cell surface hydrophobicity protein 1 (CSH1p) and surface hydrophobicity properties of Candida dubliniensis. Curr. Microbiol. 48, 447–451 10.1007/s00284-003-4223-1
    1. Hazen K., Hazen B. (1993). Surface hydrophobic and hydrophilic protein alterations in Candida albicans. FEMS Microbiol. Lett. 107, 83–87 10.1111/j.1574-6968.1993.tb06008.x
    1. Heilmann C. (2011). Adhesion mechanisms of Staphylococci. Adv. Exp. Med. Biol. 715, 105–123 10.1007/978-94-007-0940-9_7
    1. Heinrichs D., Yethon J., Whitfield C. (1998). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enteric. Mol. Microbiol. 30, 221–232 10.1046/j.1365-2958.1998.01063.x
    1. Heipieper H., Neumann G., Cornelissen S., Meinhardt F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961–973 10.1007/s00253-006-0833-4
    1. Heipieper J., Cornelissen S., Pepi M. (2010). Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons, in Handbook of Hydrocarbon and Lipid Microbiology, ed Timmis K. N. (Heidelberg, Berlin: Springer; ), 1615–1624 10.1007/978-3-540-77587-4_113
    1. Higashi J., Wang I., Shlaes D., Anderson J., Marchant R. (1998). Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J. Biomed. Mater. Res. 39, 341–350
    1. Isberg R., Barnes P. (2002). Dancing with the host: flow-dependent bacterial adhesion. Cell. 110, 1–4 10.1016/S0092-8674(02)00821-8
    1. Ivanov V., Wang X., Tay S., Tay J. (2006). Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl. Microbiol. Biotechnol. 70, 374–381 10.1007/s00253-005-0088-5
    1. Iwahori K., Tokutomi T., Miyata N., Fujita M. (2001). Formation of stable foam by the cells and culture supernatant of Gordonia (Nocardia) amarae. J. Biosci. Bioeng. 92, 77–79 10.1016/S1389-1723(01)80203-6
    1. John D., Wann E., Kreikemeyer B., Speziale P., Hook M. (1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18, 211–223 10.1016/S0945-053X(99)00025-6
    1. Kaczorek E., Chrzanowski £., Pijanowska A., Olszanowski A. (2008). Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: Rhamnolipids and saponins. Biores. Technol. 99, 4285–4291 10.1016/j.biortech.2007.08.049
    1. Kargar M., Wang J., Nain A. S., Behkam B. (2012). Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter. 8, 10254–10259 10.1039/c2sm26368h
    1. Knobben B., van der Mei H., van Horn J., Busscher H. (2007). Transfer of bacteria between biomaterials surfaces in the operating room-an experimental study. J. Biomed. Mat. Res. A 80, 790–799 10.1002/jbm.a.30978
    1. Kobayashi H., Takami H., Hirayama H., Kobata K., Usami R., Horikoshi K. (1999). Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181, 4493–4498
    1. Kochkodan V., Tsarenko S., Potapchenko N., Kosinova V., Goncharuk V. (2008). Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220, 380–385 10.1016/j.desal.2007.01.042
    1. Kolenbrander P. (1989). Surface recognition among oral bacteria, multigeneric coaggregations and their mediators. Crit. Rev. Microbiol. 17, 137–159 10.3109/10408418909105746
    1. Kolenbrander P., London J. (1992). Ecological significance of coaggregation among oral bacteria, in Advances in Microbial Ecology, Vol. 12, ed Marshall K. (New York, NY: Plenum Press; ), 183–217 10.1007/978-1-4684-7609-5_4
    1. Kragelund C., Kong Y., van der Waarde J., Thelen K., Eikelboom D., Tandoi V., et al. (2006). Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152, 3003–3012 10.1099/mic.0.29249-0
    1. Larsen P., Nielsen J., Dueholm M., Wetzel R., Otzen D., Nielsen P. (2007). Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090 10.1111/j.1462-2920.2007.01418.x
    1. Larsen P., Nielsen J., Otzen D., Nielsen P. (2008). Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl. Environ. Microbiol. 74, 1517–1526 10.1128/AEM.02274-07
    1. Linden S., Sutton P., Karlsson N., Korolik V., McGuckin M. (2008). Mucins in the mucosal barrier to infection. Muc. Immunol. 1, 183–197 10.1038/mi.2008.5
    1. Linder M. (2009). Hydrophobins: Proteins that self-assemble at interfaces. Curr. Opin. Coll. Inter. Sci. 14, 356–363 10.1016/j.cocis.2009.04.001
    1. Liu X., Sheng G., Yu H. (2009). Physicochemical characteristics of microbial granules. Biotechnol. Adv. 27, 1061–1070 10.1016/j.biotechadv.2009.05.020
    1. Liu Y., Yang S., Qin L., Tay J. (2004). A thermodynamic interpretation of cell hydrophobicity in aerobic granulation. Appl. Microb. Biotech. 64, 410–415 10.1007/s00253-003-1462-9
    1. Ly M., Aguedo M., Goudot S., Le M., Cayot P., Teixeira J., et al. (2008). Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocol. 22, 742–751 10.1016/j.foodhyd.2007.03.001
    1. Ly M., Naïtali-Bouchez M., Meylheuc T., Bellon-Fontaine M., Le T., Belin J., et al. (2006). Importance of bacterial surface properties to control the stability of emulsions. Int. J. Food Microbiol. 112, 26–34 10.1016/j.ijfoodmicro.2006.05.022
    1. Ma P. (2008). Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184–198 10.1016/j.addr.2007.08.041
    1. McGinnis M. (2004). Pathogenesis of indoor fungal diseases. Med. Mycol. 42, 107–117 10.1080/13693780410001661473
    1. McNab R., Forbes H., Handley P., Loach D., Tannock G., Jenkinson H. (1999). Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181, 3087–3095
    1. Megharaj M., Ramakrishnan B., Venkateswa K., Sethunathan N., Naidu R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37, 1362–1375 10.1016/j.envint.2011.06.003
    1. Menno L., Knetsch W., Koole L. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3, 340–366 10.3390/polym3010340
    1. Minerdi D., Bossi S., Gullino M., Garibaldi A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Env. Microbiol. 11, 844–854 10.1111/j.1462-2920.2008.01805.x
    1. Morath S. (2005). Structure/function relationships of lipoteichoic acids. Innate Immunity 11, 348–356 10.1179/096805105X67328
    1. Murzyn A., Krasowska A., Augustyniak D., Majkowska-Skrobek G., Łukaszewicz M., Dziadkowiec D. (2010). The effect of Saccharomyces boulardii on Candida albicans –infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiol. Lett. 310, 17–23 10.1111/j.1574-6968.2010.02037.x
    1. Netea M., Brown G., Kullberg B., Gow N. (2008). An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78 10.1038/nrmicro1815
    1. Nielsen J., Mikkelsen L., Nielsen P. (2001). In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci. Technol. 43, 97–103
    1. Obuekwe C., Al-Jadi Z. K., Al-Saleh E. (2009). Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeter. Biodeg. 63, 273–279 10.1016/j.ibiod.2008.10.004
    1. Palmer J., Flint S., Brooks J. (2007). Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 34, 577–588 10.1007/s10295-007-0234-4
    1. Pieckova E. (2012). Adverse health effects of indoor moulds. Arh. Hig. Rada. Toksikol. 63, 545–549 10.2478/10004-1254-63-2012-2221
    1. Pizarro-Cerda J., Cossart P. (2006). Bacterial adhesion and entry into host cells. Cell 124, 715–727 10.1016/j.cell.2006.02.012
    1. Prigent-Combaret C., Prensier G., Le Thi T., Vidal O., Lejeune P., Dorel C. (2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ. Microbiol. 2, 450–464 10.1046/j.1462-2920.2000.00128.x
    1. Rauceo J., Gaur N., Lee K. G., Edwards J., Klotz S., Lipke P. (2004). Global cell surface conformational shift mediated by a Candida albicans adhesin. Infect. Immun. 72, 4948–4955 10.1128/IAI.72.9.4948-4955.2004
    1. Rodrigues D., Elimelech M. (2009). Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling J. Bioadhes. Biofilm Res. 25, 401–411 10.1080/08927010902833443
    1. Rosenberg M., Kjelleberg S. (1986). Hydrophobic interactions in bacterial adhesion. Adv. Microb. Ecol. 9, 353–393 10.1007/978-1-4757-0611-6_8
    1. Rutter P., Vincent B. (1980). The adhesion of microorganisms to surfaces, physico-chemical aspects, in Microbial Adhesion to Surfaces, eds Berkeley R., Lynch J., Melling J., Rutter P., Vincent B. (London: Ellis Horwood; ), 79–91
    1. Sanglard D., Coste A., Ferrari S. (2009). Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 9, 1029–1050 10.1111/j.1567-1364.2009.00578.x
    1. Schwarz-Linek U., Werner J., Pickford A., Gurusiddappa S., Kim J., Pilka E., et al. (2003). Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423, 177–181 10.1038/nature01589
    1. Sidhu M., Olsen I. (1997). S-layers of Bacillus species. Microbiology 143, 1039–1052 10.1099/00221287-143-4-1039
    1. Silverman J., Clos J., de'Oliveira C., Shirvani O., Fang Y., Wang C., et al. (2010). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci. 123, 842–852 10.1242/jcs.056465
    1. Sinde E., Carballo J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluor-ethylenethe influence of free energy and the effect of commercial sanitizers. Food Microbiol. 17, 439–447 10.1006/fmic.2000.0339
    1. Singleton D., Fidel P., Jr., Wozniak K., Hazen K. (2005). Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol. Lett. 244, 373–377 10.1016/j.femsle.2005.02.010
    1. Srinivasan R., Swain G. (2007). Managing the use of copper-based antifouling paints. Environ. Manag. 39, 23–441 10.1007/s00267-005-0030-8
    1. Stevik T. K., Aa K., Ausland G., Hanssen J. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38, 1355–1367 10.1016/j.watres.2003.12.024
    1. Tabak M., Scher K., Hartog E., Romling U., Matthews K., Chikindas M., et al. (2007). Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol. Lett. 267, 200–206 10.1111/j.1574-6968.2006.00547.x
    1. Tadros T. (1980). Particle-surface adhesion, in Microbial Adhesion to Surfaces, eds Berkeley R., Lynch J., Melling J., Rutter P., Vincent B. (London: Ellis Horwood; ), 93–113
    1. Thormann E., Simonsen A., Hansen P., Mouritsen O. (2008). Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions. Langmuir 24, 7278–7284 10.1021/la8005162
    1. Tokuda H., Matsuyama S. (2004). Sorting of lipoproteins to the outer membrane in E. coli, Biochim. Biophys. Acta 1693, 5–13 10.1016/j.bbamcr.2004.02.005
    1. Ton-That H., Schneewind O. (2004). Assembly of pili in Gram-positive bacteria. Trends Microbiol. 12, 228–234 10.1016/j.tim.2004.03.004
    1. Torres S., Pandey A., Castro G. (2011). Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotech. Adv. 29, 442–452 10.1016/j.biotechadv.2011.04.002
    1. Van Loosdrecht M., Lyklema J., Norde W., Schroa G., Zehnder A. (1987). Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53, 1898–1901
    1. Van Loosdrecht M., Norde W., Zehnder A. (1990). Physical chemical description of bacterial adhesion. J. Biomater. Appl. 5, 91–106 10.1177/088532829000500202
    1. Vergara-Fernández A., Van Haaren B., Revah S. (2006). Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotech. Lett. 28, 2011–2017 10.1007/s10529-006-9186-4
    1. Wick L., de Munain A., Springael D., Harms H. (2002). Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol. 58, 378–385 10.1007/s00253-001-0898-z
    1. Wu C., Peng Y., Wang R., Zhou Y. (2012). Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere 86, 767–773 10.1016/j.chemosphere.2011.11.002
    1. Xia G., Kohler T., Peschel A. (2010). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300, 148–154 10.1016/j.ijmm.2009.10.001
    1. Yamashita S., Satoi M., Iwasa Y., Honda K., Sameshima Y., Omasa T., et al. (2007). Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl. Microbiol. Biotechnol. 74, 761–767 10.1007/s00253-006-0729-3
    1. Yazdankhah S., Scheie A., Høiby E., Lunestad B., Heir E., Fotland T., et al. (2006). Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Res. 12, 83–89 10.1089/mdr.2006.12.83
    1. Zähringer U., Knirel Y., Lindner B., Helbig J., Sonesson A., Marre R., et al. (1995). The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog. Clin. Biol. Res. 392, 113–139
    1. Zhao Q., Liu Y. (2006). Modification of stainless steel surfaces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion. J. Food Eng. 72, 266–272 10.1016/j.jfoodeng.2004.12.006
    1. Zmantar T., Bettaie F., Chaieb K., Ezzili B., Mora-Ponsonnet L., Othmane A., et al. (2011). Atomic force microscopy and hydrodynamic characterization of the adhesion of Staphylococcus aureus to hydrophilic and hydrophobic substrata at different pH values. World J. Microbiol. Biotechnol. 27, 887–896 10.1007/s11274-010-0531-3

Source: PubMed

3
Abonner