Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization

Christos Chamos, Liana Vele, Mark Hamilton, Maurizio Cecconi, Christos Chamos, Liana Vele, Mark Hamilton, Maurizio Cecconi

Abstract

The monitoring of the cardiac output (CO) and other hemodynamic parameters, traditionally performed with the thermodilution method via a pulmonary artery catheter (PAC), is now increasingly done with the aid of less invasive and much easier to use devices. When used within the context of a hemodynamic optimization protocol, they can positively influence the outcome in both surgical and non-surgical patient populations. While these monitoring tools have simplified the hemodynamic calculations, they are subject to limitations and can lead to erroneous results if not used properly. In this article we will review the commercially available minimally invasive CO monitoring devices, explore their technical characteristics and describe the limitations that should be taken into consideration when clinical decisions are made.

Figures

Figure 1
Figure 1
The area under the curve (AUC) of the systolic phase is indicative of the SV. The SV is the shaded area under the systolic portion of the arterial pulse waveform. It is calculated as=[area under systolic phase+ aortic compliance] x shape of pressure curve.
Figure 2
Figure 2
The transpulmonary thermodilution curve, with the characteristic delay in the peak temperature change compared to the PAC thermodilution. Based on the same principle as the PAC thermodilution, the transpulmonary method obviates the need for a PAC.
Figure 3
Figure 3
Correlation of fluid responsiveness with SVV/PPV variables. As a general rule, the higher the SVV/PPV values, the more fluid responsive the patient will be. The correlation can only be applied to mechanically ventilated patients.

References

    1. Cecconi M, Rhodes A. Within five years cardiac output monitoring will be included in the minimum monitoring standards for major surgery. Bulletin of the Royal College of Anaesthetists. 2012;2:31–33.
    1. Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;2:1392–1402. doi: 10.1213/ANE.0b013e3181eeaae5.
    1. Erlanger J, Hooker DR. An experimental study of blood pressure and of pulse‒pressure in man. Johns Hopkins Hosp Rep. 1904;2:145–378.
    1. van Lieshout JJ, Wesseling KH. Editorial II: Continuous cardiac output by pulse contour analysis? Br J Anaesth. 2001;2:467–468. doi: 10.1093/bja/86.4.467.
    1. Wesseling KH, de Wit B, Weber JAP, Ty SN. A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys. 1983;2:16–52.
    1. Breukers SM, Sepehrkhouy S, Spiegelenberg SR, Groeneveld AB. Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery. J Cardiothorac Vasc Anesth. 2007;2:632–635. doi: 10.1053/j.jvca.2007.01.001.
    1. Bataille B, Bertuit M, Mora M, Mazerolles M, Cocquet P, Masson B, Moussot PE, Ginot J, Silva S, Larché J. Comparison of esCCO and transthoracic echocardiography for non-invasive measurement of cardiac output intensive care. Br J Anaesth. 2012;2:879–886. doi: 10.1093/bja/aes298.
    1. Mayer J, Boldt J, Poland R, Peterson A, Manecke GR Jr. Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J Cardiothorac Vasc Anesth. 2009;2:401–406. doi: 10.1053/j.jvca.2009.03.003.
    1. Khwannimit B, Bhurayanontachai R. Prediction of fluid responsiveness in septic shock patients: comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation. Eur J Anaesthesiol. 2012;2:64–69.
    1. Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;2:615–622. doi: 10.1093/bja/aer491.
    1. Jeong YB, Kim TH, Roh YJ, Choi IC, Suh JH. Comparison of uncalibrated arterial pressure waveform analysis with continuous thermodilution cardiac output measurements in patients undergoing elective off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2010;2:767–771. doi: 10.1053/j.jvca.2010.02.006.
    1. Kusaka Y, Yoshitani K, Irie T, Inatomi Y, Shinzawa M, Ohnishi Y. Clinical comparison of an echocardiograph-derived versus pulse counter-derived cardiac output measurement in abdominal aortic aneurysm surgery. J Cardiothorac Vasc Anesth. 2012;2:223–226. doi: 10.1053/j.jvca.2011.07.011.
    1. Fischer MO, Avram R, Cârjaliu I, Massetti M, Gérard JL, Hanouz JL, Fellahi JL. Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery. Br J Anaesth. 2012;2:514–521. doi: 10.1093/bja/aes215.
    1. Broch O, Renner J, Gruenewald M, Meybohm P, Schöttler J, Caliebe A, Steinfath M, Malbrain M, Bein B. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012;2:377–383. doi: 10.1111/j.1365-2044.2011.07018.x.
    1. van der Spoel A, Voogel AJ, Folkers A, Boer C, Bouwman RA. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J Clin Anesth. 2012;2:304–309. doi: 10.1016/j.jclinane.2011.09.008.
    1. Chen G, Meng L, Alexander B, Tran NP, Kain ZN, Cannesson M. Comparison of noninvasive cardiac output measurements using the Nexfin monitoring device and the esophageal Doppler. J Clin Anesth. 2012;2:275–283. doi: 10.1016/j.jclinane.2011.08.014.
    1. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;2:1900–1908. doi: 10.1378/chest.124.5.1900.
    1. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, Endo T, Yamanouchi S, Tagami T, Yamaguchi J, Yoshikawa K, Sugita M, Kase Y, Kanemura T, Takahashi H, Kuroki Y, Izumino H, Rinka H, Seo R, Takatori M, Kaneko T, Nakamura T, Irahara T, Saito N, Watanabe A. The PiCCO Pulmonary Edema Study Group. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary oedema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/ acute respiratory distress syndrome. Crit Care. 2012;2:R232. doi: 10.1186/cc11898.
    1. Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;2:799–811. doi: 10.1213/ANE.0b013e3181cc885a.
    1. Lemson J, de Boode WP, Hopman JC, Singh SK, van der Hoeven JG. Validation of transpulmonary thermodilution cardiac output measurement in a pediatric animal model. Pediatr Crit Care Med. 2008;2:313–319. doi: 10.1097/PCC.0b013e31816c6fa1.
    1. Nusmeier A, de Boode WP, Hopman JC, Schoof PH, van der Hoeven JG, Lemson J. Cardiac output can be measured with the transpulmonary thermodilution method in a paediatric animal model with a left-to-right shunt. Br J Anaesth. 2011;2:336–343. doi: 10.1093/bja/aer127.
    1. Wouters PF, Quaghebeur B, Sergeant P, Van Hemelrijck J, Vandermeersch E. Cardiac output monitoring using a brachial arterial catheter during off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2005;2:160–164. doi: 10.1053/j.jvca.2004.10.001.
    1. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, Hoeft A, Bendjelid K, Rex S. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;2:R98. doi: 10.1186/cc11366.
    1. Drummond KE, Murphy E. Minimally invasive cardiac output monitors. Contin Educ Anaesth Crit Care Pain. 2012;2:5–10. doi: 10.1093/bjaceaccp/mkr044.
    1. Rhodes A, Sunderland R. In: Functional Hemodynamic Monitoring Update in Intensive Care and Emergency Medicine. Pinsky MR, Payen D, editor. Berlin: Springer; 2005. Arterial pulse pressure analysis: the LiDCOplus system; pp. 183–192.
    1. Mora B, Ince I, Birkenberg B, Skhirtladze K, Pernicka E, Ankersmit HJ, Dworschak M. Validation of cardiac output measurement with the LiDCO™ pulse contour system in patients with impaired left ventricular function after cardiac surgery. Anaesthesia. 2011;2:675–681. doi: 10.1111/j.1365-2044.2011.06754.x.
    1. Costa MG, Della Rocca G, Chiarandini P, Mattelig S, Pompei L, Barriga MS, Reynolds T, Cecconi M, Pietropaoli P. Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Int Care Med. 1008;2:257–263.
    1. Broch O, Renner J, Höcker J, Gruenewald M, Meybohm P, Schöttler J, Steinfath M, Bein B. Uncalibrated pulse power analysis fails to reliably measure cardiac output in patients undergoing coronary artery bypass surgery. Crit Care. 2011;2:R76. doi: 10.1186/cc10065.
    1. Beattie C, Moores C, Thomson AJ, Nimmo AF. The effect of anaesthesia and aortic clamping on cardiac output measurement using arterial pulse power analysis during aortic aneurysm repair. Anaesthesia. 2010;2:1194–1199. doi: 10.1111/j.1365-2044.2010.06558.x.
    1. DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;2:1782–1786. doi: 10.1016/S0003-4975(00)01129-2.
    1. Madan AK, UyBarreta VV, Aliabadi-Wahle S, Jesperson R, Hartz RS, Flint LM, Steinberg SM. Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma. 1999;2:607–611. doi: 10.1097/00005373-199904000-00008. discussion 11–12.
    1. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;2:423–429. doi: 10.1001/archsurg.1995.01430040085019.
    1. Cariou A, Monchi M, Joly LM, Bellenfant F, Claessens YE, Thebert D, Brunet F, Dhainaut JF. Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med. 1998;2:2066–2072. doi: 10.1097/00003246-199812000-00043.
    1. Freund PR. Transesophageal Doppler scanning versus thermodilution during general anesthesia. An initial comparison of cardiac output techniques. Am J Surg. 1987;2:490–494. doi: 10.1016/0002-9610(87)90800-2.
    1. Lefrant JY, Bruelle P, Aya AG, Saissi G, Dauzat M, de La Coussaye JE, Eledjam JJ. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med. 1998;2:347–352. doi: 10.1007/s001340050578.
    1. Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;2:2060–2066. doi: 10.1007/s00134-004-2430-2.
    1. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;2:909–912. doi: 10.1136/bmj.315.7113.909.
    1. Venn R, Steele A, Richardson P, Poloniecki J, Grounds M, Newman P. Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth. 2002;2:65–71. doi: 10.1093/bja/88.1.65.
    1. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;2:1069–1076. doi: 10.1002/bjs.5454.
    1. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, Fleming SC. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;2:634–642. doi: 10.1093/bja/aei223.
    1. Ghosh S, Arthur B, Klein AA. NICE guidance on CardioQ(TM) oesophageal Doppler monitoring. Anaesthesia. 2011;2:1081–1083. doi: 10.1111/j.1365-2044.2011.06967.x.
    1. Tan HL, Pinder M, Parsons R, Roberts B, van Heerden PV. Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit. Br J Anaesth. 2005;2:287–291. doi: 10.1093/bja/aei054.
    1. Chand R, Mehta Y, Trehan N. Cardiac output estimation with a new Doppler device after off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2006;2:315–319. doi: 10.1053/j.jvca.2005.05.024.
    1. Nyboer J. In: Medical Physics, Volume 2. Glasser O, editor. Chicago, IL: Year Book Pub; 1950. Plethysmography. Impedance; pp. 736–743.
    1. Kubicek WG, Karegis JN, Patterson RP, Witsoe DA, Matteson RH. Development and evaluation of an impedance cardiac output system. Aerosp Med. 1966;2:1208–1212.
    1. Barin E, Haryadi DG, Schookin SI, Westenskow DR, Zubenko VG, Beliaev KR, Morozov AA. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med. 2000;2:698–702. doi: 10.1097/00003246-200003000-00016.
    1. Imhoff M, Lehner JH, Lohlein D. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med. 2000;2:2812–2818. doi: 10.1097/00003246-200008000-00022.
    1. Raaijmakers E, Faes TJ, Scholten RJ, Goovaerts HG, Heethaar RM. A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med. 1999;2:1203–1213. doi: 10.1097/00003246-199906000-00053.
    1. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;2:113–119. doi: 10.1007/s10877-008-9112-5.
    1. Guzzi L, Jaffe MB, Orr JA. Clinical evaluation of a new non-invasive method of cardiac output measurement – preliminary results in CABG patients. Anesthesiology. 1998;2:A543. doi: 10.1097/00000542-199809100-00010.
    1. Berton C, Cholley B. Equipment review: New techniques for cardiac output measurement – oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Crit Care Med. 2002;2:216–221. doi: 10.1186/cc1492.
    1. Odenstedt H, Stenqvist O, Lundin S. Clinical evaluation of a partial CO2 rebreathing technique for cardiac output monitoring in critically ill patients. Acta Anaesthesiol Scand. 2002;2:152–159. doi: 10.1034/j.1399-6576.2002.t01-1-460205.x.
    1. Rocco M, Spadetta G, Morelli A, Dell’Utri D, Porzi P, Conti G, Pietropaoli P. A comparative evaluation of thermodilution and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation. Intensive Care Med. 2004;2:82–87. doi: 10.1007/s00134-003-2069-4.
    1. Kotake Y, Moriyama K, Innami Y, Shimizu H, Ueda T, Morisaki H, Takeda J. Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology. 2003;2:283–288. doi: 10.1097/00000542-200308000-00009.
    1. Rocco M, Spadetta G, Morelli A, Dell’Utri D, Porzi P, Conti G, Pietropaoli P. A comparative evaluation of thermodilution and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation. Intensive Care Med. 2004;2:82–87. doi: 10.1007/s00134-003-2069-4.
    1. Tachibana K, Imanaka H, Takeuchi M, Takauchi Y, Miyano H, Nishimura M. Noninvasive cardiac output measurement using partial carbon dioxide - rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present. Anesthesiology. 2003;2:830–837. doi: 10.1097/00000542-200304000-00007.
    1. Nilsson LB, Eldrup N, Berthelsen PG. Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand. 2001;2:680–685. doi: 10.1034/j.1399-6576.2001.045006680.x.
    1. Wagner CE, Bick JS, Webster BH, Selby JH, Byrne JG. Use of a miniaturized transesophageal echocardiographic probe in the intensive care unit for diagnosis and treatment of a hemodynamically unstable patient after aortic valve replacement. J Cardiothorac Vasc Anesth. 2012;2:95–97. doi: 10.1053/j.jvca.2011.01.016.
    1. Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiography measurement of fluid responsiveness. Curr Opin Crit Care. 2006;2:249–254. doi: 10.1097/.
    1. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;2:691–699. doi: 10.1097/01.CCM.0000114996.68110.C9.
    1. Cannesson M, Aboy M, Hofer CK, Rehman M. Pulse pressure variation: Where are we today? J Clin Monit Comput. 2010;2:45–56.
    1. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;2:200–206. doi: 10.1093/bja/aen133.
    1. Shoemaker WC, Czer LSC. Evaluation of the biologic importance of various hemodynamic and oxygen transport variables. Crit Care Med. 1979;2:424–429. doi: 10.1097/00003246-197909000-00015.
    1. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;2:1176–1186. doi: 10.1378/chest.94.6.1176.
    1. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445] Crit Care. 2005;2:R687–R693. doi: 10.1186/cc3887.
    1. Aya HD, Cecconi M, Hamilton M, Rhodes A. Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth. 2013;2:510–517. doi: 10.1093/bja/aet020.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;2:1368–1377. doi: 10.1056/NEJMoa010307.

Source: PubMed

3
Abonner