Occurrence of Coronary Collaterals in Acute Myocardial Infarction and Sleep Apnea

Verena Summerer, Michael Arzt, Henrik Fox, Olaf Oldenburg, Florian Zeman, Kurt Debl, Stefan Buchner, Stefan Stadler, Verena Summerer, Michael Arzt, Henrik Fox, Olaf Oldenburg, Florian Zeman, Kurt Debl, Stefan Buchner, Stefan Stadler

Abstract

Background In patients with acute myocardial infarction (MI), cardioprotective effects of obstructive sleep apnea are postulated on account of hypoxemic preconditioning. The aim of this single-center substudy was to investigate a potential association between obstructive sleep apnea and the presence of coronary collaterals in patients with first-time acute MI who have been enrolled in an ongoing, multicenter clinical trial. Methods and Results In TEAM-ASV I (Treatment of Sleep Apnea Early After Myocardial Infarction With Adaptive Servo-Ventilation Trial; NCT02093377) patients with first acute MI who received a coronary angiogram within 24 hours after onset of symptoms underwent polygraphy within the first 3 days. Coronary collaterals were classified visually by assigning a Cohen-Rentrop Score (CRS) ranging between 0 (no collaterals) and 3. Of 94 analyzed patients, 14% had significant coronary collaterals with a CRS ≥2. Apnea-Hypopnea Index (AHI) score was significantly higher in patients with CRS ≥2 compared with those with CRS <2 (31/hour [11-54] versus 13/hour [4-27]; P=0.032). A multivariable regression model revealed a significant association between obstructive AHI and CRS ≥2 that was independent of age, sex, body mass index, and culprit lesion left anterior descending artery (odds ratio [OR], 1.06; 95% CI, 1.01-1.12; P=0.023), but no significant association between coronary collaterals and central AHI (OR, 1.02; 95% CI, 0.97-1.08; P=0.443). Conclusions Patients with first-time acute MI had more extensive coronary collateralization with an increased AHI or rather an increased obstructive AHI. This finding supports the hypothesis that obstructive sleep apnea exerts potential cardioprotective effects, in addition to its known deleterious effects, in patients with acute MI. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02093377.

Keywords: coronary collaterals; hypoxic preconditioning; myocardial infarction; sleep‐disordered breathing.

Conflict of interest statement

Arzt received research grants from ResMed, the ResMed Foundation, Philips Respironics, and the Else‐Kröner Fresenius Foundation (2018_A159), as well as lecture and consulting fees from ResMed, Philips Respironics, Boehringer‐Ingelheim, NRI, Novartis, and Bresotec. The remaining authors have no disclosures to report.

Figures

Figure 1. Coronary collaterals classified to the…
Figure 1. Coronary collaterals classified to the Cohen‐Rentrop Score.
Shown are cranial projections in which the left anterior descending artery collateralizes the occluded right coronary artery. Arrows mark the collaterals. A, grade 0=no filling of collateral vessels; B, grade 1=filling of collateral vessels without any opacification of the epicardial recipient artery; C, grade 2=partial filling of the target epicardial artery by collateral vessels; D, grade 3=complete epicardial filling of the recipient artery by collaterals.
Figure 2. Study flow chart.
Figure 2. Study flow chart.
CMR indicates cardiac magnetic resonance imaging; CRS, Cohen‐Rentrop Score; and TEAM‐ASV I, Treatment of Sleep Apnea Early After Myocardial Infarction With Adaptive Servo‐Ventilation Trial.

References

    1. Arzt M, Hetzenecker A, Steiner S, Buchner S. Sleep‐disordered breathing and coronary artery disease. Can J Cardiol. 2015;31:909–917. DOI: 10.1016/j.cjca.2015.03.032.
    1. Buchner S, Satzl A, Debl K, Hetzenecker A, Luchner A, Husser O, Hamer OW, Poschenrieder F, Fellner C, Zeman F, et al. Impact of sleep‐disordered breathing on myocardial salvage and infarct size in patients with acute myocardial infarction. Eur Heart J. 2014;35:192–199. DOI: 10.1093/eurheartj/eht450.
    1. Sterz U, Buchner S, Hetzenecker A, Satzl A, Debl K, Luchner A, Husser O, Hamer OW, Fellner C, Zeman F, et al. Resolution of ST deviation after myocardial infarction in patients with and without sleep‐disordered breathing. Somnologie (Berl). 2019;23:8–16.
    1. Zaremba S. Vaskuläre Konsequenzen schlafbezogener Erkrankungen. Somnologie (Berl). 2019;23:1–2. DOI: 10.1007/s11818-019-0197-5.
    1. Shah N, Redline S, Yaggi HK, Wu R, Zhao CG, Ostfeld R, Menegus M, Tracy D, Brush E, Appel WD, et al. Obstructive sleep apnea and acute myocardial infarction severity: ischemic preconditioning? Sleep Breath. 2013;17:819–826. DOI: 10.1007/s11325-012-0770-7.
    1. Lavie L, Lavie P. Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea. Med Hypotheses. 2006;66:1069–1073. DOI: 10.1016/j.mehy.2005.10.033.
    1. Jorge R Kizer NS. Obstructive sleep apnea in the acute myocardial infarction setting—should I treat my patient? J Sleep Disord Treat Care. 2013;02:1–10. DOI: 10.4172/2325-9639.1000109.
    1. Berger S, Aronson D, Lavie P, Lavie L. Endothelial progenitor cells in acute myocardial infarction and sleep‐disordered breathing. Am J Respir Crit Care Med. 2013;187:90–98. DOI: 10.1164/rccm.201206-1144OC.
    1. Steiner S, Schueller PO, Schulze V, Strauer BE. Occurrence of coronary collateral vessels in patients with sleep apnea and total coronary occlusion. Chest. 2010;137:516–520. DOI: 10.1378/chest.09-1136.
    1. Ben Ahmed H, Boussaid H, Longo S, Tlili R, Fazaa S, Baccar H, Boujnah MR. Impact of obstructive sleep apnea in recruitment of coronary collaterality during inaugural acute myocardial infarction. Ann Cardiol Angeiol (Paris). 2015;64:273–278. DOI: 10.1016/j.ancard.2015.01.014.
    1. Fox H, Hetzenecker A, Stadler S, Oldenburg O, Hamer OW, Zeman F, Bruch L, Seidel M, Buchner S, Arzt M. Rationale and design of the randomised Treatment of sleep apnoea Early After Myocardial infarction with Adaptive Servo‐Ventilation trial (TEAM‐ASV I). Trials. 2020;21:129. DOI: 10.1186/s13063-020-4091-z.
    1. Licka M, Zimmermann R, Zehelein J, Dengler TJ, Katus HA, Kübler W. Troponin T concentrations 72 hours after myocardial infarction as a serological estimate of infarct size. Heart. 2002;87:520–524. DOI: 10.1136/heart.87.6.520.
    1. Sandoval Y, Apple FS, Saenger AK, Collinson PO, Wu AHB, Jaffe AS. 99th percentile upper‐reference limit of cardiac troponin and the diagnosis of acute myocardial infarction. Clin Chem. 2020;66:1167–1180. DOI: 10.1093/clinchem/hvaa158.
    1. Danker‐Hopfe H, Richter S, Eggert T. Referenzwerte zur Schlafarchitektur für Erwachsene. Somnologie (Berl). 2020;24:39–64. DOI: 10.1007/s11818-020-00243-y.
    1. Berry R, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Marcus CL, Vaughn BV. The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specification, Version 2.1. Darien, IL: American Academy of Sleep Medicine; 2014. Available at: . Accessed April 19, 2021.
    1. Arzt M, Oldenburg O, Graml A, Erdmann E, Teschler H, Wegscheider K, Suling A, Woehrle H. Phenotyping of sleep‐disordered breathing in patients with chronic heart failure with reduced ejection fraction‐the SchlaHF Registry. J Am Heart Assoc. 2017;6:e005899. DOI: 10.1161/JAHA.116.005899.
    1. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8:597–619. DOI: 10.5664/jcsm.2172.
    1. Peter Rentrop K, Cohen M, Blanke H, Phillips RA. Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol. 1985;5:587–592. DOI: 10.1016/S0735-1097(85)80380-6.
    1. Buchner S, Greimel T, Hetzenecker A, Luchner A, Hamer OW, Debl K, Poschenrieder F, Fellner C, Riegger GAJ, Pfeifer M, et al. Natural course of sleep‐disordered breathing after acute myocardial infarction. Eur Respir J. 2012;40:1173–1179. DOI: 10.1183/09031936.00172211.
    1. Allahwala UK, Weaver JC, Nelson GI, Nour D, Ray M, Ciofani JL, Ward M, Figtree G, Hansen P, Bhindi R. Effect of recruitment of acute coronary collaterals on in‐hospital mortality and on left ventricular function in patients presenting with ST elevation myocardial infarction. Am J Cardiol. 2020;125:1455–1460. DOI: 10.1016/j.amjcard.2020.02.023.
    1. Freund A, Stiermaier T, de Waha‐Thiele S , Eitel I, Schock S, Lurz P, Thiele H, Desch S. Coronary collaterals in patients with ST‐elevation myocardial infarction presenting late after symptom onset. Clin Res Cardiol. 2020;109:1307–1315. DOI: 10.1007/s00392-020-01625-w.
    1. Gessner V, Bitter T, Horstkotte D, Oldenburg O, Fox H. Impact of sleep‐disordered breathing in patients with acute myocardial infarction: a retrospective analysis. J Sleep Res. 2017;26:657–664. DOI: 10.1111/jsr.12540.
    1. Reshetnik A, Puppe S, Bonnemeier H. Central sleep apnoea and arrhythmogenesis after myocardial infarction‐the CESAAR study. Front Cardiovasc Med. 2019;6:108. DOI: 10.3389/fcvm.2019.00108.
    1. Abaci A, Oğuzhan A, Kahraman S, Eryol NK, Unal S, Arinç H, Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation. 1999;99:2239–2242. DOI: 10.1161/01.CIR.99.17.2239.
    1. Shen Y, Ding FH, Dai Y, Wang XQ, Zhang RY, Lu L, Shen WF. Reduced coronary collateralization in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2018;17:26. DOI: 10.1186/s12933-018-0671-6.
    1. Melidonis A, Tournis S, Kouvaras G, Baltaretsou E, Hadanis S, Hajissavas I, Tsatsoulis A, Foussas S. Comparison of coronary collateral circulation in diabetic and nondiabetic patients suffering from coronary artery disease. Clin Cardiol. 1999;22:465–471. DOI: 10.1002/clc.4960220706.
    1. Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation. 1992;85:1197–1204. DOI: 10.1161/01.CIR.85.3.1197.
    1. Kim EK, Choi J‐H, Song YB, Hahn J‐Y, Chang S‐A, Park S‐J, Lee S‐C, Choi S‐H, Choe YH, Park SW, et al. A protective role of early collateral blood flow in patients with ST‐segment elevation myocardial infarction. Am Heart J. 2016;171:56–63. DOI: 10.1016/j.ahj.2015.10.016.
    1. Sasaki H, Fukuda S, Otani H, Zhu L, Yamaura G, Engelman RM, Das DK, Maulik N. Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile functional reserve in rat with myocardial infarction. J Mol Cell Cardiol. 2002;34:335–348. DOI: 10.1006/jmcc.2001.1516.
    1. Ma J, Xu Y, Zhang Z, Liu H, Xiong W, Xu S. Serum level of vascular endothelial growth factor in patients with obstructive sleep apnea hypopnea syndrome. J Huazhong Univ Sci Technolog Med Sci. 2007;27:157–160. DOI: 10.1007/s11596-007-0212-0.
    1. Imagawa S, Yamaguchi Y, Higuchi M, Neichi T, Hasegawa Y, Mukai HY, Suzuki N, Yamamoto M, Nagasawa T. Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea–hypopnea syndrome. Blood. 2001;98:1255–1257. DOI: 10.1182/blood.V98.4.1255.
    1. Gozal D, Lipton AJ, Jones KL. Circulating vascular endothelial growth factor levels in patients with obstructive sleep apnea. Sleep. 2002;25:59–65. DOI: 10.1093/sleep/25.1.59.
    1. Peled N, Shitrit D, Bendayan D, Peled E, Kramer MR. Association of elevated levels of vascular endothelial growth factor in obstructive sleep apnea syndrome with patient age rather than with obstructive sleep apnea syndrome severity. Respiration. 2007;74:50–55. DOI: 10.1159/000095675.
    1. Schulz R, Hummel C, Heinemann S, Seeger W, Grimminger F. Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med. 2002;165:67–70. DOI: 10.1164/ajrccm.165.1.2101062.
    1. Collet J‐P, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation. Eur Heart J. 2021;42:1289–1367. DOI: 10.15829/1560-4071-2021-4418.
    1. Arzt M, Woehrle H, Oldenburg O, Graml A, Suling A, Erdmann E, Teschler H, Wegscheider K. Prevalence and predictors of sleep‐disordered breathing in patients with stable chronic heart failure: the SchlaHF Registry. JACC Heart Fail. 2016;4:116–125. 10.1016/j.jchf.2015.09.014.
    1. Erman MK, Stewart D, Einhorn D, Gordon N, Casal E. Validation of the ApneaLink™ for the screening of sleep apnea: a novel and simple single‐channel recording device. J Clin Sleep Med. 2007;3:387–392. DOI: 10.5664/jcsm.26861.
    1. Chen H, Lowe AA, Bai Y, Hamilton P, Fleetham JA, Almeida FR. Evaluation of a portable recording device (ApneaLink) for case selection of obstructive sleep apnea. Sleep Breath. 2009;13:213–219. DOI: 10.1007/s11325-008-0232-4.
    1. Tafelmeier M, Knapp M, Lebek S, Floerchinger B, Camboni D, Creutzenberg M, Wittmann S, Zeman F, Schmid C, Maier LS, et al. Predictors of delirium after cardiac surgery in patients with sleep disordered breathing. Eur Respir J. 2019;54:1900354. DOI: 10.1183/13993003.00354-2019.

Source: PubMed

3
Abonner