Rationale and design of the randomised Treatment of sleep apnoea Early After Myocardial infarction with Adaptive Servo-Ventilation trial (TEAM-ASV I)

Henrik Fox, Andrea Hetzenecker, Stefan Stadler, Olaf Oldenburg, Okka W Hamer, Florian Zeman, Leonhard Bruch, Mirko Seidel, Stefan Buchner, Michael Arzt, TEAM-ASV I Investigators, Henrik Fox, Andrea Hetzenecker, Stefan Stadler, Olaf Oldenburg, Okka W Hamer, Florian Zeman, Leonhard Bruch, Mirko Seidel, Stefan Buchner, Michael Arzt, TEAM-ASV I Investigators

Abstract

Aims: In acute myocardial infarction (AMI), impaired myocardial salvage and large infarct size result in residual heart failure, which is one of the most important predictors of morbidity and mortality after AMI. Sleep-disordered breathing (SDB) is associated with reduced myocardial salvage index (MSI) within the first 3 months after AMI. Adaptive servo-ventilation (ASV) can effectively treat both types of SDB (central and obstructive sleep apnoea). The Treatment of sleep apnoea Early After Myocardial infarction with Adaptive Servo-Ventilation trial (TEAM-ASV I) will investigate the effects of ASV therapy, added to percutaneous coronary intervention (PCI) and optimal medical management of AMI, on myocardial salvage after AMI.

Methods/design: TEAM ASV-I is a multicentre, randomised, parallel-group, open-label trial with blinded assessment of PCI outcomes. Patients with first AMI and successful PCI within 24 h after symptom onset and SDB (apnoea-hypopnoea index ≥ 15/h) will be randomised (1:1 ratio) to PCI and optimal medical therapy alone (control) or plus ASV (with stratification of randomisation by infarct location; left anterior descending (LAD) or no LAD lesion). The primary outcome is the MSI, assessed by cardiac magnetic resonance imaging. Key secondary outcomes are change of infarct size, left ventricular ejection fraction and B-type natriuretic peptide levels and disease-specific symptom burden at 12 weeks.

Conclusion: TEAM ASV-I will help to determine whether treatment of SDB with ASV in the acute phase after myocardial infarction contributes to more myocardial salvage and healing.

Trial registration: ClinicalTrials.gov, NCT02093377. Registered on March 21, 2014.

Keywords: Adaptive servo-ventilation; Cardiac magnetic resonance imaging; Heart failure; Myocardial infarction; Myocardial salvage; Sleep-disordered breathing.

Conflict of interest statement

HF, OH, SS, OO, AH, FZ and SB have no competing interests to declare in regard to this study. MA received grant support from the ResMed Foundation (La Jolla, CA, USA). MA has also received grant support from ResMed (Martinsried, Germany), Philips Respironics (Murrysville, PA, USA).

Figures

Fig. 1
Fig. 1
Schedule of study visits. ASV adaptive servo-ventilation, ECG electrocardiogram, OMT optimal medical therapy, SAQ Seattle Angina Questionnaire

References

    1. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–1172. doi: 10.1161/01.CIR.81.4.1161.
    1. Eitel I, Desch S, Fuernau G, Hildebrand L, Gutberlet M, Schuler G, et al. Prognostic significance and determinants of myocardial salvage assessed by cardiovascular magnetic resonance in acute reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:2470–2479. doi: 10.1016/j.jacc.2010.01.049.
    1. Joyeux-Faure M, Stanke-Labesque F, Lefebvre B, Beguin P, Godin-Ribuot D, Ribuot C, et al. Chronic intermittent hypoxia increases infarction in the isolated rat heart. J Appl Physiol (1985) 2005;98:1691–1696. doi: 10.1152/japplphysiol.01146.2004.
    1. Ramond A, Godin-Ribuot D, Ribuot C, Totoson P, Koritchneva I, Cachot S, et al. Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia. Fundam Clin Pharmacol. 2013;27:252–261. doi: 10.1111/j.1472-8206.2011.01015.x.
    1. Tkacova R, Rankin F, Fitzgerald FS, Floras JS, Bradley TD. Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation. 1998;98:2269–2275. doi: 10.1161/01.CIR.98.21.2269.
    1. Buchner S, Greimel T, Hetzenecker A, Luchner A, Hamer OW, Debl K, et al. Natural course of sleep-disordered breathing after acute myocardial infarction. Eur Respir J. 2012;40:1173–1179. doi: 10.1183/09031936.00172211.
    1. Fox H, Purucker HC, Holzhacker I, Tebtmann U, Bitter T, Horstkotte D, et al. Prevalence of sleep-disordered breathing and patient characteristics in a coronary artery disease cohort undergoing cardiovascular rehabilitation. J Cardiopulm Rehabil Prev. 2016;36:421–429. doi: 10.1097/HCR.0000000000000192.
    1. Mayer G, Arzt M, Braumann B, Ficker JH, Fietze I, Frohnhofen H, et al. German S3 guideline nonrestorative sleep/sleep disorders, chapter “sleep-related breathing disorders in adults,” short version: German Sleep Society (Deutsche Gesellschaft fur Schlafforschung und Schlafmedizin, DGSM) Somnologie (Berl) 2017;21:290–301. doi: 10.1007/s11818-017-0136-2.
    1. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–1904. doi: 10.1172/JCI118235.
    1. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69:841–858. doi: 10.1016/j.jacc.2016.11.069.
    1. Hetzenecker A, Buchner S, Greimel T, Satzl A, Luchner A, Debl K, et al. Cardiac workload in patients with sleep-disordered breathing early after acute myocardial infarction. Chest. 2013;143:1294–1301. doi: 10.1378/chest.12-1930.
    1. Sterz U, Buchner S, Hetzenecker A, Satzl A, Debl K, Luchner A, et al. Resolution of ST deviation after myocardial infarction in patients with and without sleep-disordered breathing. Somnologie. 2018;23:8–16. doi: 10.1007/s11818-018-0154-8.
    1. Buchner S, Satzl A, Debl K, Hetzenecker A, Luchner A, Husser O, et al. Impact of sleep-disordered breathing on myocardial salvage and infarct size in patients with acute myocardial infarction. Eur Heart J. 2014;35:192–199. doi: 10.1093/eurheartj/eht450.
    1. Gessner V, Bitter T, Horstkotte D, Oldenburg O, Fox H. Impact of sleep-disordered breathing in patients with acute myocardial infarction: a retrospective analysis. J Sleep Res. 2017;26:657–664. doi: 10.1111/jsr.12540.
    1. Buchner S, Eglseer M, Debl K, Hetzenecker A, Luchner A, Husser O, et al. Sleep disordered breathing and enlargement of the right heart after myocardial infarction. Eur Respir J. 2015;45:680–690. doi: 10.1183/09031936.00057014.
    1. Fisser C, Marcinek A, Hetzenecker A, Debl K, Luchner A, Sterz U, et al. Association of sleep-disordered breathing and disturbed cardiac repolarization in patients with ST-segment elevation myocardial infarction. Sleep Med. 2017;33:61–67. doi: 10.1016/j.sleep.2017.01.007.
    1. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunstrom E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. The RICCADSA randomized controlled trial. Am J Respir Crit Care Med. 2016;194:613–620. doi: 10.1164/rccm.201601-0088OC.
    1. Sanchez-de-la-Torre M, Sanchez-de-la-Torre A, Bertran S, Abad J, Duran-Cantolla J, Cabriada V, et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med. 2019. 10.1016/S2213-2600(19)30271-1.
    1. Randerath W, Verbraecken J, Andreas S, Arzt M, Bloch KE, Brack T, et al. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J. 2017;49:1600959. doi: 10.1183/13993003.00959-2016.
    1. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393.
    1. Task Force on the management of STseamiotESoC. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–2619. doi: 10.1093/eurheartj/ehs215.
    1. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8:597–619. doi: 10.5664/jcsm.2172.
    1. Spertus JA, Winder JA, Dewhurst TA, Deyo RA, Prodzinski J, McDonell M, et al. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995;25:333–341. doi: 10.1016/0735-1097(94)00397-9.
    1. Clark TG, Altman DG. Developing a prognostic model in the presence of missing data: an ovarian cancer case study. J Clin Epidemiol. 2003;56:28–37. doi: 10.1016/S0895-4356(02)00539-5.
    1. Carlsson M, Ubachs JF, Hedstrom E, Heiberg E, Jovinge S, Arheden H. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc Imaging. 2009;2:569–576. doi: 10.1016/j.jcmg.2008.11.018.
    1. O'Regan DP, Ahmed R, Neuwirth C, Tan Y, Durighel G, Hajnal JV, et al. Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention. Am J Physiol Heart Circ Physiol. 2009;297:H340–H346. doi: 10.1152/ajpheart.00011.2009.
    1. Linz D, Colling S, Nussstein W, Debl K, Hohl M, Fellner C, et al. Nocturnal hypoxemic burden is associated with epicardial fat volume in patients with acute myocardial infarction. Sleep Breath. 2018;22:703–711. doi: 10.1007/s11325-017-1616-0.
    1. Nakashima H, Muto S, Amenomori K, Shiraishi Y, Nunohiro T, Suzuki S. Impact of obstructive sleep apnea on myocardial tissue perfusion in patients with ST-segment elevation myocardial infarction. Circ J. 2011;75:890–896. doi: 10.1253/circj.CJ-10-0768.
    1. Nakashima H, Katayama T, Takagi C, Amenomori K, Ishizaki M, Honda Y, et al. Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction. Eur Heart J. 2006;27:2317–2322. doi: 10.1093/eurheartj/ehl219.
    1. Barbe F, Sanchez-de-la-Torre A, Abad J, Duran-Cantolla J, Mediano O, Amilibia J, et al. Effect of obstructive sleep apnoea on severity and short-term prognosis of acute coronary syndrome. Eur Respir J. 2015;45:419–427. doi: 10.1183/09031936.00071714.
    1. Fox H, Bitter T, Horstkotte D, Oldenburg O. Sleep-disordered breathing and arrhythmia in heart failure patients. Sleep Med Clin. 2017;12:229–241. doi: 10.1016/j.jsmc.2017.01.003.
    1. Schulz R, Schmidt D, Blum A, Lopes-Ribeiro X, Lucke C, Mayer K, et al. Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea: response to CPAP therapy. Thorax. 2000;55:1046–1051. doi: 10.1136/thorax.55.12.1046.
    1. Garcia-Rio F, Alonso-Fernandez A, Armada E, Mediano O, Lores V, Rojo B, et al. CPAP effect on recurrent episodes in patients with sleep apnea and myocardial infarction. Int J Cardiol. 2013;168:1328–1335. doi: 10.1016/j.ijcard.2012.12.015.

Source: PubMed

3
Abonner