The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis

Georgia Mandolesi, Francesca Romana Rizzo, Sara Balletta, Mario Stampanoni Bassi, Luana Gilio, Livia Guadalupi, Monica Nencini, Alessandro Moscatelli, Colleen Patricia Ryan, Valerio Licursi, Ettore Dolcetti, Alessandra Musella, Antonietta Gentile, Diego Fresegna, Silvia Bullitta, Silvia Caioli, Valentina Vanni, Krizia Sanna, Antonio Bruno, Fabio Buttari, Chiara Castelli, Carlo Presutti, Francesca De Santa, Annamaria Finardi, Roberto Furlan, Diego Centonze, Francesca De Vito, Georgia Mandolesi, Francesca Romana Rizzo, Sara Balletta, Mario Stampanoni Bassi, Luana Gilio, Livia Guadalupi, Monica Nencini, Alessandro Moscatelli, Colleen Patricia Ryan, Valerio Licursi, Ettore Dolcetti, Alessandra Musella, Antonietta Gentile, Diego Fresegna, Silvia Bullitta, Silvia Caioli, Valentina Vanni, Krizia Sanna, Antonio Bruno, Fabio Buttari, Chiara Castelli, Carlo Presutti, Francesca De Santa, Annamaria Finardi, Roberto Furlan, Diego Centonze, Francesca De Vito

Abstract

The identification of microRNAs in biological fluids for diagnosis and prognosis is receiving great attention in the field of multiple sclerosis (MS) research but it is still in its infancy. In the present study, we observed in a large sample of MS patients that let-7b-5p levels in the cerebrospinal fluid (CSF) were highly correlated with a number of microRNAs implicated in MS, as well as with a variety of inflammation-related protein factors, showing specific expression patterns coherent with let-7b-5p-mediated regulation. Additionally, we found that the CSF let-7b-5p levels were significantly reduced in patients with the progressive MS compared to patients with relapsing-remitting MS and were negatively correlated with characteristic hallmark processes of the two phases of the disease. Indeed, in the non-progressive phase, let-7b-5p inversely associated with both central and peripheral inflammation; whereas, in progressive MS, the CSF levels of let-7b-5p negatively correlated with clinical disability at disease onset and after a follow-up period. Overall, our results uncovered, by the means of a multidisciplinary approach and multiple statistical analyses, a new possible pleiotropic action of let-7b-5p in MS, with potential utility as a biomarker of MS course.

Trial registration: ClinicalTrials.gov NCT03217396.

Keywords: Expanded Disability Status Scale (EDSS); G_CSF; IL5; RANTES; inflammation; let-7; miRNAs; multiple sclerosis (MS); progressive multiple sclerosis (PMS).

Conflict of interest statement

D.C. is the recipient of an Institutional grant from Biogen. No personal compensation was received. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results. F.B. acted as Advisory Board members of Teva and Roche and received honoraria for speaking or consultation fees from Merck Serono, Teva, Biogen Idec, Sanofi, and Novartis and non-financial support from Merck Serono, Teva, Biogen Idec, and Sanofi. R.F. received honoraria for serving on scientific advisory boards or as a speaker from Biogen, Novartis, Roche, and Merck and funding for research from Merck. M.S. received research support and consulting fees from Biogen, Merck-Serono, Novartis, Roche, Sanofi, Teva. D.C. is an Advisory Board member of Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva and received honoraria for speaking or consultation fees from Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva. He is also the principal investigator in clinical trials for Bayer Schering, Biogen, Merck Serono, Mitsubishi, Novartis, Roche, Sanofi-Genzyme, and Teva. His preclinical and clinical research was supported by grants from Bayer Schering, Biogen Idec, Celgene, Merck Serono, Novartis, Roche, Sanofi-Genzyme and Teva. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. The other authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Let-7 family is a good candidate as a MS-associated miRNA. (A) DNA sequences alignment of the mature miRNAs part of the let-7 family. In black the nucleotides positions conserved among all members of the let-7 family. The seed sequence is indicated as a red box. (A’) Genomic organization of let-7 family genes in humans. Gene clusters are divided according to the genome organization (intronic or intergenic). Chromosome strands are indicated by (+) or (−). Figure information sourced from http://microrna.sanger.ac.uk/sequences/. (B) Functional analysis of experimentally validated target mRNAs of let-7 obtained from miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php). The most represented Gene Ontology categories for target mRNAs are reported in the figure. Size dots are correlated with the number of genes that belong to a Gene Ontology category and dots are colored according to the Benjamini-Hochberg false discovery rate adjusted p-values from blue (higher p-adjusted) to red (lower p-adjusted). (B’) Network of let-7 targets that can be ascribed to three main processes involved in MS pathophysiology: inflammation (light blue rectangle); neuronal homeostasis (green rectangle); RNA metabolism (orange rectangle). Target mRNAs of let-7 involved in more than one process are represented into the rectangle overlapping zones. Targets participating in other pathways are grouped into a light violet rectangle (26 out of 130).
Figure 1
Figure 1
Let-7 family is a good candidate as a MS-associated miRNA. (A) DNA sequences alignment of the mature miRNAs part of the let-7 family. In black the nucleotides positions conserved among all members of the let-7 family. The seed sequence is indicated as a red box. (A’) Genomic organization of let-7 family genes in humans. Gene clusters are divided according to the genome organization (intronic or intergenic). Chromosome strands are indicated by (+) or (−). Figure information sourced from http://microrna.sanger.ac.uk/sequences/. (B) Functional analysis of experimentally validated target mRNAs of let-7 obtained from miRTarBase (http://mirtarbase.cuhk.edu.cn/php/index.php). The most represented Gene Ontology categories for target mRNAs are reported in the figure. Size dots are correlated with the number of genes that belong to a Gene Ontology category and dots are colored according to the Benjamini-Hochberg false discovery rate adjusted p-values from blue (higher p-adjusted) to red (lower p-adjusted). (B’) Network of let-7 targets that can be ascribed to three main processes involved in MS pathophysiology: inflammation (light blue rectangle); neuronal homeostasis (green rectangle); RNA metabolism (orange rectangle). Target mRNAs of let-7 involved in more than one process are represented into the rectangle overlapping zones. Targets participating in other pathways are grouped into a light violet rectangle (26 out of 130).
Figure 2
Figure 2
Let-7b-5p is a hub in the network of miRNAs in the CSF of patients with MS. (A) Heat map of Pearson’s correlation coefficients (r) between 23 miRNAs (relative to miR-204-5p, according to the ΔCt calculation) detected by qPCR in the CSF of the main cohort of patients (n = 166) at T0. In the upper triangle, r values of significant correlation (p < 0.05) were represented by coloured circles according to the scale (r > 0 is positive correlation, 0 no correlation and <−1 is negative correlation). In the lower triangle, r values are reported following the color code. Squares represent three different clusters identified by hierarchical clustering using the cutree R function with k = 3. Only statistically significant correlations with FDR < 0.05 are shown. (A’) Network representation of miRNA correlation. In red, there are detected members of the let-7 family (let-7b-5p, let-7e-5p and let-7f-5p). Blue nodes are other miRNAs relevant for MS, which correlate each other and/or with let-7b-5p (r ≥ 0.5). In green are miRNAs with r < 0.5. Pink and light blue areas represent, respectively, the first and the second correlation clusters, highlighted in panel A of the figure by the two lower squares.
Figure 3
Figure 3
Let-7b-5p is an anti-inflammatory regulator of the complex pathway of soluble biochemical factors circulating in the MS CFS. By means of hierarchical cluster analysis, we divided in homogeneous groups, the 27 inflammation-related proteins (variables), quantified by multiple assays on 166 MS patients at T0. (A) We used the silhouette method to identify the optimal number of clusters, equal to two main clusters (A’) The result of this analysis was represented as a dendrogram: cluster 1 (red) with 7/27 inflammatory proteins (IFNγ, IL1ra, IL8, IP10, IL5, G_CSF, RANTES); cluster 2 (blue) including 20/27 inflammatory proteins (PDGFbb, IL12_p70, FGFbasic, IL15, IL2, GM_CSF, IL17, IL13, IL4, IL9, IL7, IL6, VEGF, IL1β, IL10, MCP1, eotaxin, TNFα, MIP1a, MIP1b).
Figure 4
Figure 4
The levels of let-7b-5p are different according to diverse MS disease subtypes. (A) Box and whisker plots of let-7b-5p levels in the CSF, isolated from control subjects (Ctr) compared to all MS patients (Ctr, n = 20; All patients, n = 166; Mann-Whitney test, p > 0.05). (A’) Box and whisker plots of let-7b-5p levels in the CSF isolated from control subjects compared to patients separated in CIS/RIS, RRMS and PMS patients (Ctr, n = 20; CIS/RIS, n= 25; RRMS, n = 117; PMS, n = 24; Kruskal-Wallis test, * p < 0.05 RRMS vs. PMS). Data were normalized to miR-204-5p expressed as 2−ΔCt let7b-5p-miR-204-5p). Values are median of 2−ΔCt with 10–90% percentiles (error bars) and 25–75% percentiles (open boxes).
Figure 5
Figure 5
The correlations with inflammation and cognitive performances revealed a putative protective role of let-7b-5p in non-progressive phase. (A) Correlation plot between let-7b-5p levels and the count of peripheral T cells of non-PMS (n = 140) at T0. A negative correlation was observed (Spearman’s correlation: rs = −0.216, * p < 0.01). (B,B’) Correlation plot between let-7b-5p levels and Scheme 106. and Phonemic (n = 95) verbal fluency of non-PMS patients at T0. A positive correlation was observed in both executive and categorical memory functions (Spearman’s correlation, B: rs = −0.294, p < 0.01; B’: rs = 0.218, ** p < 0.05).
Figure 6
Figure 6
The CSF level of let-7b-5p correlates with disease severity in MS progressive phase. (A) Correlation plot between let-7b-5p levels and the count of peripheral T cells of PMS patients (n = 22, A) at T0. (B,B’) Correlation plot between let-7b-5p levels and EDSS of PMS patients at T0 (n = 24, B) and after a follow-up period ((Tf1), n = 21, B’). A negative correlation was observed at both T0 (Spearman’s correlation, Spearman’s r = −0.463, * p < 0.05) and Tf1 (Spearman’s correlation, Spearman’s r = −0.536, * p < 0.05).

References

    1. Dendrou C.A., Fugger L., Friese M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015;15:545–558. doi: 10.1038/nri3871.
    1. Kunkl M., Frascolla S., Amormino C., Volpe E., Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells. 2020;9:482. doi: 10.3390/cells9020482.
    1. Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Harris V.K., Tuddenham J.F., Sadiq S.A. Biomarkers of multiple sclerosis: Current findings. Degener. Neurol. Neuromuscul. Dis. 2017;7:19–29. doi: 10.2147/DNND.S98936.
    1. Martinez B., Peplow P.V. MicroRNAs in blood and cerebrospinal fluid as diagnostic biomarkers of multiple sclerosis and to monitor disease progression. Neural Regen. Res. 2020;15:606–619. doi: 10.4103/1673-5374.266905.
    1. Perdaens O., Dang H.A., D’Auria L., van Pesch V. CSF microRNAs discriminate MS activity and share similarity to other neuroinflammatory disorders. Neurol. Neuroimmunol. Neuroinflamm. 2020;7 doi: 10.1212/NXI.0000000000000673.
    1. Krol J., Loedige I., Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010;11:597–610. doi: 10.1038/nrg2843.
    1. Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108.
    1. Vidigal J.A., Ventura A. The biological functions of miRNAs: Lessons from in vivo studies. Trends Cell Biol. 2015;25:137–147. doi: 10.1016/j.tcb.2014.11.004.
    1. Ivey K.N., Srivastava D. MicroRNAs as Developmental Regulators. Cold Spring Harb. Perspect. Biol. 2015;7:a008144. doi: 10.1101/cshperspect.a008144.
    1. Long H., Wang X., Chen Y., Wang L., Zhao M., Lu Q. Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 2018;428:90–103. doi: 10.1016/j.canlet.2018.04.016.
    1. Angelou C.C., Wells A.C., Vijayaraghavan J., Dougan C.E., Lawlor R., Iverson E., Lazarevic V., Kimura M.Y., Pobezinsky L.A. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front. Immunol. 2020;10:3125. doi: 10.3389/fimmu.2019.03125.
    1. Kimura K., Hohjoh H., Fukuoka M., Sato W., Oki S., Tomi C., Yamaguchi H., Kondo T., Takahashi R., Yamamura T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat. Commun. 2018;9:17. doi: 10.1038/s41467-017-02406-2.
    1. Roush S., Slack F.J. The let-7 family of microRNAs. Trends Cell Biol. 2008;18:505–516. doi: 10.1016/j.tcb.2008.07.007.
    1. Guan H., Fan D., Mrelashvili D., Hao H., Singh N.P., Singh U.P., Nagarkatti P.S., Nagarkatti M. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2013;43:104–114. doi: 10.1002/eji.201242702.
    1. Lehmann S.M., Krüger C., Park B., Derkow K., Rosenberger K., Baumgart J., Trimbuch T., Eom G., Hinz M., Kaul D., et al. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 2012;15:827–835. doi: 10.1038/nn.3113.
    1. Gaudet A.D., Fonken L.K., Watkins L.R., Nelson R.J., Popovich P.G. MicroRNAs: Roles in Regulating Neuroinflammation. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 2018;24:221–245. doi: 10.1177/1073858417721150.
    1. Liguori M., Nuzziello N., Licciulli F., Consiglio A., Simone M., Viterbo R.G., Creanza T.M., Ancona N., Tortorella C., Margari L., et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease. Hum. Mol. Genet. 2018;27:66–79. doi: 10.1093/hmg/ddx385.
    1. Manna I., Iaccino E., Dattilo V., Barone S., Vecchio E., Mimmi S., Filippelli E., Demonte G., Polidoro S., Granata A., et al. Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J. 2018;32:4241–4246. doi: 10.1096/fj.201701533R.
    1. Licursi V., Conte F., Fiscon G., Paci P. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform. 2019;20:545. doi: 10.1186/s12859-019-3105-x.
    1. Huang H.-Y., Lin Y.-C.-D., Li J., Huang K.-Y., Shrestha S., Hong H.-C., Tang Y., Chen Y.-G., Jin C.-N., Yu Y., et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48:D148–D154. doi: 10.1093/nar/gkz896.
    1. Yu G., Wang L.-G., Han Y., He Q.-Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118.
    1. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556.
    1. Mandolesi G., Gentile A., Musella A., Fresegna D., De Vito F., Bullitta S., Sepman H., Marfia G.A., Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat. Rev. Neurol. 2015;11:711–724. doi: 10.1038/nrneurol.2015.222.
    1. McGowan H., Mirabella V.R., Hamod A., Karakhanyan A., Mlynaryk N., Moore J.C., Tischfield J.A., Hart R.P., Pang Z.P. hsa-let-7c miRNA Regulates Synaptic and Neuronal Function in Human Neurons. Front. Synaptic Neurosci. 2018;10:19. doi: 10.3389/fnsyn.2018.00019.
    1. Gandhi R. miRNA in multiple sclerosis: Search for novel biomarkers. Mult. Scler. 2015;21:1095–1103. doi: 10.1177/1352458515578771.
    1. Huang Q., Xiao B., Ma X., Qu M., Li Y., Nagarkatti P., Nagarkatti M., Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2016;295–296:148–161. doi: 10.1016/j.jneuroim.2016.04.014.
    1. Mandolesi G., De Vito F., Musella A., Gentile A., Bullitta S., Fresegna D., Sepman H., Di Sanza C., Haji N., Mori F., et al. miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. J. Neurosci. 2017;37:546–561. doi: 10.1523/JNEUROSCI.0851-16.2016.
    1. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366.
    1. Stampanoni Bassi M., Buttari F., Simonelli I., Gilio L., Furlan R., Finardi A., Marfia G.A., Visconti A., Paolillo A., Storto M., et al. A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes. 2020;11:1152. doi: 10.3390/genes11101152.
    1. Costa A., Bagoj E., Monaco M., Zabberoni S., De Rosa S., Papantonio A.M., Mundi C., Caltagirone C., Carlesimo G.A. Standardization and normative data obtained in the Italian population for a new verbal fluency instrument, the phonemic/semantic alternate fluency test. Neurol. Sci. 2014;35:365–372. doi: 10.1007/s10072-013-1520-8.
    1. Measso G., Cavarzeran F., Zappalà G., Lebowitz B.D., Crook T.H., Pirozzolo F.J., Amaducci L.A., Massari D., Grigoletto F. The Mini-Mental State Examination: Normative Study of An Italian Random Sample. Dev. Neuropsychol. 1993;9:77–85. doi: 10.1080/87565649109540545.
    1. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034.
    1. Marabita F., de Candia P., Torri A., Tegnér J., Abrignani S., Rossi R.L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform. 2016;17:204–212. doi: 10.1093/bib/bbv056.
    1. Bergman P., Piket E., Khademi M., James T., Brundin L., Olsson T., Piehl F., Jagodic M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e219. doi: 10.1212/NXI.0000000000000219.
    1. Bruinsma I.B., van Dijk M., Bridel C., van de Lisdonk T., Haverkort S.Q., Runia T.F., Steinman L., Hintzen R.Q., Killestein J., Verbeek M.M., et al. Regulator of oligodendrocyte maturation, miR-219, a potential biomarker for MS. J. Neuroinflamm. 2017;14:235. doi: 10.1186/s12974-017-1006-3.
    1. Gallego J.A., Gordon M.L., Claycomb K., Bhatt M., Lencz T., Malhotra A.K. In vivo microRNA detection and quantitation in cerebrospinal fluid. J. Mol. Neurosci. 2012;47:243–248. doi: 10.1007/s12031-012-9731-7.
    1. Burgos K.L., Javaherian A., Bomprezzi R., Ghaffari L., Rhodes S., Courtright A., Tembe W., Kim S., Metpally R., Van Keuren-Jensen K. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA. 2013;19:712–722. doi: 10.1261/rna.036863.112.
    1. Harris V.K., Sadiq S.A. Biomarkers of therapeutic response in multiple sclerosis: Current status. Mol. Diagn. Ther. 2014;18:605–617. doi: 10.1007/s40291-014-0117-0.
    1. Stoicea N., Du A., Lakis D.C., Tipton C., Arias-Morales C.E., Bergese S.D. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front. Genet. 2016;7:11. doi: 10.3389/fgene.2016.00011.
    1. Lescher J., Paap F., Schultz V., Redenbach L., Scheidt U., Rosewich H., Nessler S., Fuchs E., Gärtner J., Brück W., et al. MicroRNA regulation in experimental autoimmune encephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosis lesions. J. Neuroimmunol. 2012;246:27–33. doi: 10.1016/j.jneuroim.2012.02.012.
    1. Thamilarasan M., Koczan D., Hecker M., Paap B., Zettl U.K. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun. Rev. 2012;11:174–179. doi: 10.1016/j.autrev.2011.05.009.
    1. Freiesleben S., Hecker M., Zettl U.K., Fuellen G., Taher L. Analysis of microRNA and Gene Expression Profiles in Multiple Sclerosis: Integrating Interaction Data to Uncover Regulatory Mechanisms. Sci. Rep. 2016;6:34512. doi: 10.1038/srep34512.
    1. Wei T., Simko V., Levy M., Xie Y., Jin Y., Zemla J. Package “Corrplot”. [(accessed on 2 February 2021)];2017 Available online: .
    1. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media; Berlin, Germany: 2009.
    1. Csardi G., Nepusz T. The igraph software package for complex network research. Int. J. Commun. Syst. 2006;1695:1–9.
    1. Kaufman L., Rousseeuw P.J. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons; Hoboken, NJ, USA: 2009.
    1. Langfelder P., Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi: 10.1186/1471-2105-9-559.
    1. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004;32:D109–D111. doi: 10.1093/nar/gkh023.
    1. Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017;13:25–36. doi: 10.1038/nrneurol.2016.187.
    1. Munõz-San Martín M., Reverter G., Robles-Cedenõ R., Buxò M., Ortega F.J., Gómez I., Tomàs-Roig J., Celarain N., Villar L.M., Perkal H., et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J. Neuroinflamm. 2019;16:1–10. doi: 10.1186/s12974-019-1590-5.
    1. Haghikia A., Hellwig K., Baraniskin A., Holzmann A., Décard B.F., Thum T. Regulated microRNAs in the CSF of patients with multiple sclerosis. Neurology. 2012;79:2166–2170. doi: 10.1212/WNL.0b013e3182759621.
    1. Ebrahimkhani S., Vafaee F., Young P.E., Hur S.S.J., Hawke S., Devenney E., Beadnall H., Barnett M.H., Suter C.M., Buckland M.E. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci. Rep. 2017;7:14293. doi: 10.1038/s41598-017-14301-3.
    1. Juźwik C.A., Drake S., Zhang Y., Paradis-Isler N., Sylvester A., Amar-Zifkin A., Douglas C., Morquette B., Moore C.S., Fournier A.E. MicroRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol. 2019;182:101664. doi: 10.1016/j.pneurobio.2019.101664.
    1. Cantoni C., Cignarella F., Ghezzi L., Mikesell B., Bollman B., Berrien-Elliott M.M., Ireland A.R., Fehniger T.A., Wu G.F., Piccio L. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 2017;133:61–77. doi: 10.1007/s00401-016-1621-6.
    1. Finardi A., Diceglie M., Carbone L., Arnò C., Mandelli A., De Santis G., Fedeli M., Dellabona P., Casorati G., Furlan R. Mir106b-25 and Mir17-92 Are Crucially Involved in the Development of Experimental Neuroinflammation. Front. Neurol. 2020;11:912. doi: 10.3389/fneur.2020.00912.
    1. Keller A., Leidinger P., Steinmeyer F., Stähler C., Franke A., Hemmrich-Stanisak G., Kappel A., Wright I., Dörr J., Paul F., et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult. Scler. 2014;20:295–303. doi: 10.1177/1352458513496343.
    1. Arruda L.C.M., Lorenzi J.C.C., Sousa A.P.A., Zanette D.L., Palma P.V.B., Panepucci R.A., Brum D.S., Barreira A.A., Covas D.T., Simões B.P., et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant. 2015;50:380–389. doi: 10.1038/bmt.2014.277.
    1. Sun X., Zhang H. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4. Cell Tissue Res. 2018;374:487–495. doi: 10.1007/s00441-018-2898-7.
    1. Morquette B., Juźwik C.A., Drake S.S., Charabati M., Zhang Y., Lécuyer M.-A., Galloway D.A., Dumas A., de Faria Junior O., Paradis-Isler N., et al. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain. 2019;142:2979–2995. doi: 10.1093/brain/awz245.
    1. Teuber-Hanselmann S., Meinl E., Junker A. MicroRNAs in gray and white matter multiple sclerosis lesions: Impact on pathophysiology. J. Pathol. 2020;250:496–509. doi: 10.1002/path.5399.
    1. Letellier M., Elramah S., Mondin M., Soula A., Penn A., Choquet D., Landry M., Thoumine O., Favereaux A. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat. Neurosci. 2014;17:1040–1042. doi: 10.1038/nn.3762.
    1. Junker A., Krumbholz M., Eisele S., Mohan H., Augstein F., Bittner R., Lassmann H., Wekerle H., Hohlfeld R., Meinl E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain. 2009;132:3342–3352. doi: 10.1093/brain/awp300.
    1. Iliopoulos D., Hirsch H.A., Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706. doi: 10.1016/j.cell.2009.10.014.
    1. Sung S.-Y., Liao C.-H., Wu H.-P., Hsiao W.-C., Wu I.-H., Yu J., Lin S.-H., Hsieh C.-L. Loss of let-7 microRNA upregulates IL-6 in bone marrow-derived mesenchymal stem cells triggering a reactive stromal response to prostate cancer. PLoS ONE. 2013;8:e71637. doi: 10.1371/journal.pone.0071637.
    1. Gong Z., Zhao S., Zhang J., Xu X., Guan W., Jing L., Liu P., Lu J., Teng J., Peng T., et al. Initial research on the relationship between let-7 family members in the serum and massive cerebral infarction. J. Neurol. Sci. 2016;361:150–157. doi: 10.1016/j.jns.2015.12.047.
    1. Wang X., Wang H.-X., Li Y.-L., Zhang C.-C., Zhou C.-Y., Wang L., Xia Y.-L., Du J., Li H.-H. MicroRNA Let-7i negatively regulates cardiac inflammation and fibrosis. Hypertension. 2015;66:776–785. doi: 10.1161/HYPERTENSIONAHA.115.05548.
    1. Jiang L., Cheng Z., Qiu S., Que Z., Bao W., Jiang C., Zou F., Liu P., Liu J. Altered let-7 expression in Myasthenia gravis and let-7c mediated regulation of IL-10 by directly targeting IL-10 in Jurkat cells. Int. Immunopharmacol. 2012;14:217–223. doi: 10.1016/j.intimp.2012.07.003.
    1. Filiano A.J., Gadani S.P., Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci. 2017;18:375–384. doi: 10.1038/nrn.2017.39.
    1. Gentile A., De Vito F., Fresegna D., Rizzo F.R., Bullitta S., Guadalupi L., Vanni V., Buttari F., Stampanoni Bassi M., Leuti A., et al. Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathol. Appl. Neurobiol. 2020;46:160–170. doi: 10.1111/nan.12569.
    1. Tufekci K.U., Oner M.G., Genc S., Genc K. MicroRNAs and Multiple Sclerosis. Autoimmune Dis. 2010;2011:807426. doi: 10.4061/2011/807426.
    1. Nuzziello N., Ciaccia L., Liguori M. Precision Medicine in Neurodegenerative Diseases: Some Promising Tips Coming from the microRNAs’ World. Cells. 2020;9:75. doi: 10.3390/cells9010075.
    1. Sun Y., Peng R., Peng H., Liu H., Wen L., Wu T., Yi H., Li A., Zhang Z. miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol. Cell. Endocrinol. 2016;433:75–86. doi: 10.1016/j.mce.2016.06.004.
    1. Teng G., Wang W., Dai Y., Wang S., Chu Y., Li J. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS ONE. 2013;8:e56709. doi: 10.1371/journal.pone.0056709.
    1. Essandoh K., Li Y., Huo J., Fan G.-C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock. 2016;46:122–131. doi: 10.1097/SHK.0000000000000604.
    1. Ghadiri N., Emamnia N., Ganjalikhani-Hakemi M., Ghaedi K., Etemadifar M., Salehi M., Shirzad H., Nasr-Esfahani M.H. Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene. 2018;659:109–117. doi: 10.1016/j.gene.2018.03.035.
    1. Vistbakka J., Sumelahti M.-L., Lehtimäki T., Elovaara I., Hagman S. Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol. Scand. 2018;138:130–136. doi: 10.1111/ane.12921.
    1. Marques-Rocha J.L., Garcia-Lacarte M., Samblas M., Bressan J., Martínez J.A., Milagro F.I. Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: Effects of fatty acids. J. Physiol. Biochem. 2018;74:579–589. doi: 10.1007/s13105-018-0629-x.
    1. Zhao C., Sun G., Li S., Lang M.-F., Yang S., Li W., Shi Y. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc. Natl. Acad. Sci. USA. 2010;107:1876–1881. doi: 10.1073/pnas.0908750107.
    1. Schulte L.N., Eulalio A., Mollenkopf H.-J., Reinhardt R., Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 2011;30:1977–1989. doi: 10.1038/emboj.2011.94.
    1. Salvi V., Gianello V., Tiberio L., Sozzani S., Bosisio D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front. Immunol. 2019;10:15. doi: 10.3389/fimmu.2019.00015.

Source: PubMed

3
Abonner