Protocol for promoting recovery optimization of walking activity in stroke (PROWALKS): a randomized controlled trial

Henry Wright, Tamara Wright, Ryan T Pohlig, Scott E Kasner, Jonathan Raser-Schramm, Darcy Reisman, Henry Wright, Tamara Wright, Ryan T Pohlig, Scott E Kasner, Jonathan Raser-Schramm, Darcy Reisman

Abstract

Background: Stroke survivors are more physically inactive than even the most sedentary older adults, and low activity is associated with increased risk of recurrent stroke, medical complications, and mortality. We hypothesize that the combination of a fast walking intervention that improves walking capacity, with a step activity monitoring program that facilitates translation of gains from the clinic to the "real-world", would generate greater improvements in real world walking activity than with either intervention alone.

Methods: Using a single-blind randomized controlled experimental design, 225 chronic (> 6 months) stroke survivors complete 12 weeks of fast walking training, a step activity monitoring program or a fast walking training + step activity monitoring program. Main eligibility criteria include: chronic ischemic or hemorrhagic stroke (> 6 months post), no evidence of cerebellar stroke, baseline walking speed between 0.3 m/s and 1.0 m/s, and baseline average steps / day < 8000. The primary (steps per day), secondary (self-selected and fastest walking speed, walking endurance, oxygen consumption) and exploratory (vascular events, blood lipids, glucose, blood pressure) outcomes are assessed prior to initiating treatment, after the last treatment and at a 6 and 12-month follow-up. Moderation of the changes in outcomes by baseline characteristics are evaluated to determine for whom the interventions are effective.

Discussion: Following completion of this study, we will not only understand the efficacy of the interventions and the individuals for which they are effective, we will have the necessary information to design a study investigating the secondary prevention benefits of improved physical activity post-stroke. This study is, therefore, an important step in the development of both rehabilitative and secondary prevention guidelines for persons with stroke.

Trial registration: ClinicalTrials.gov Identifier: NCT02835313 . First Posted: July 18, 2016.

Keywords: Physical activity; Rehabilitation; Stroke; Walking.

Conflict of interest statement

Ethics approval and consent to participate

This research has been approved by the University of Delaware, Christiana Care Health System and University of Pennsylvania Institutional Review Boards.

Consent for publication

Not applicable – this manuscript does not contain an individual person’s data.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study Schedule and Subject Flow Diagram (TM = Treadmill, GXT = Graded eXercise Test, VO2 = Ventilated Oxygen)

References

    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e245. doi: 10.1161/CIR.0b013e318282ab8f.
    1. Michael K, Macko RF. Ambulatory activity intensity profiles, fitness, and fatigue in chronic stroke. Top Stroke Rehabil. 2007;14(2):5–12. doi: 10.1310/tsr1402-5.
    1. Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005;86(8):1552–1556. doi: 10.1016/j.apmr.2004.12.026.
    1. Rand D, Eng JJ, Tang P, Hung C, Jeng J. Daily physical activity and its contribution to the health-related quality of life of ambulatory individuals with chronic stroke. Health Qual Life Outcomes. 2010;8(1):80. doi: 10.1186/1477-7525-8-80.
    1. Hornnes N, Larsen K, Boysen G. Little change of modifiable risk factors 1 year after stroke: a pilot study. Int J Stroke. 2010;5(3):157–162. doi: 10.1111/j.1747-4949.2010.00424.x.
    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e215.
    1. Michael K, Goldberg AP, Treuth MS, Beans J, Normandt P, Macko RF. Progressive adaptive physical activity in stroke improves balance, gait, and fitness: preliminary results. Top Stroke Rehabil. 2009;16(2):133–139. doi: 10.1310/tsr1602-133.
    1. Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals Poststroke who have reached a “plateau” in recovery. Stroke. 2010;41(1):129–135. doi: 10.1161/STROKEAHA.109.563247.
    1. Mudge S, Barber PA, Stott NS. Circuit-based rehabilitation improves gait endurance but not usual walking activity in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2009;90(12):1989–1996. doi: 10.1016/j.apmr.2009.07.015.
    1. Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–174. doi: 10.1161/STROKEAHA.108.516328.
    1. Bowden MG, Behrman AL, Neptune RR, Gregory CM, Kautz SA. Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch Phys Med Rehabil. 2013;94(5):856. doi: 10.1016/j.apmr.2012.11.032.
    1. Reisman DS, Binder-MacLeod S, Farquhar WB. Changes in metabolic cost of transport following locomotor training poststroke. Top Stroke Rehabil. 2013;20(2):161–170. doi: 10.1310/tsr2002-161.
    1. Awad LN, Reisman DS, Pohlig RT, Binder-Macleod SA. Reducing the cost of transport and increasing walking distance after stroke. Neurorehabil Neural Repair. 2016;30(7):661–670. doi: 10.1177/1545968315619696.
    1. Reisman D, Kesar T, Perumal R, Roos M, Rudolph K, Higginson J, et al. Time course of functional and biomechanical improvements during a gait training intervention in persons with chronic stroke. J Neurol Phys Ther. 2013;37(4):159–165. doi: 10.1097/NPT.0000000000000020.
    1. Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, et al. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait & Posture. 2011;33(2):309–313. doi: 10.1016/j.gaitpost.2010.11.019.
    1. Reisman DS, Rudolph KS, Farquhar WB. Influence of speed on walking economy Poststroke. Neurorehabil Neural Repair. 2009;23(6):529–534. doi: 10.1177/1545968308328732.
    1. Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys Ther. 2011;91(3):392–403. doi: 10.2522/ptj.20090425.
    1. Tudor-Locke C, Bassett Jr DR. How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8. doi: 10.2165/00007256-200434010-00001.
    1. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–2304. doi: 10.1001/jama.298.19.2296.
    1. Sidman CL, Corbin CB, Le Masurier G. Promoting physical activity among sedentary women using pedometers. Res Q Exerc Sport. 2004;75(2):122–129. doi: 10.1080/02701367.2004.10609143.
    1. Tudor-Locke C, Lutes L. Why do pedometers work?: a reflection upon the factors related to successfully increasing physical activity. Sports Med. 2009;39(12):981–993. doi: 10.2165/11319600-000000000-00000.
    1. Morris JH, Macgillivray S, McFarlane S. Interventions to promote long-term participation in physical activity after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2014;95(5):956–967. doi: 10.1016/j.apmr.2013.12.016.
    1. Butler L, Furber S, Phongsavan P, Mark A, Bauman A. Effects of a pedometer-based intervention on physical activity levels after cardiac rehabilitation: a RANDOMIZED CONTROLLED TRIAL. J Cardiopulm Rehabil Prev. 2009;29(2):105–114. doi: 10.1097/HCR.0b013e31819a01ff.
    1. Danks KA, Roos MA, McCoy D, Reisman DS. A step activity monitoring program improves real world walking activity post stroke. Disabil Rehabil. 2014;36(26):2233–2236. doi: 10.3109/09638288.2014.903303.
    1. Danks KA, Pohlig R, Reisman DS. Combining fast-walking training and a step activity monitoring program to improve daily walking activity after stroke: a preliminary study. Arch Phys Med Rehabil. 2016;97(9 Suppl):S193.
    1. Lam JM, Globas C, Cerny J, Hertler B, Uludag K, Forrester LW, et al. Predictors of response to treadmill exercise in stroke survivors. Neurorehabil Neural Repair. 2010;24(6):567–574. doi: 10.1177/1545968310364059.
    1. Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, et al. Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007;87(12):1580–1602. doi: 10.2522/ptj.20060310.
    1. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on high blood pressure research. Hypertension. 2005;45(1):142–161. doi: 10.1161/01.HYP.0000150859.47929.8e.
    1. Berlowitz DR, Hoenig H, Cowper DC, Duncan PW, Vogel WB. Impact of comorbidities on stroke rehabilitation outcomes: does the method matter? Arch Phys Med Rehabil. 2008;89(10):1903–1906. doi: 10.1016/j.apmr.2008.03.024.
    1. Plummer P, Behrman AL, Duncan PW, Spigel P, Saracino D, Martin J, et al. Effects of stroke severity and training duration on locomotor recovery after stroke: a pilot study. Neurorehabil Neural Repair. 2007;21(2):137–151. doi: 10.1177/1545968306295559.
    1. Pohl PS, Duncan PW, Perera S, Liu W, Lai SM, Studenski S, et al. Influence of stroke-related impairments on performance in 6-minute walk test. J Rehabil Res Dev. 2002;39(4):439.
    1. Botner EM, Miller WC, Eng JJ. Measurement properties of the activities-specific balance confidence scale among individuals with stroke. Disabil Rehabil. 2005;27(4):156–163. doi: 10.1080/09638280400008982.
    1. Williams LS, Brizendine EJ, Plue L, Bakas T, Tu W, Hendrie H, et al. Performance of the PHQ-9 as a screening tool for depression after stroke. Stroke. 2005;36(3):635–638. doi: 10.1161/01.STR.0000155688.18207.33.
    1. Burton L, Tyson SF. Screening for cognitive impairment after stroke: a systematic review of psychometric properties and clinical utility. J Rehabil Med. 2015;47(3):193. doi: 10.2340/16501977-1930.
    1. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92.
    1. Whaley MH, Armstrong L. ACSM’s guidelines for exercise testing and prescription. 7. Philadelphia: Lippincott Williams & Wilkins; 2006.
    1. Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM, Bales CW, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet. 2014;383(9922):1059–1066. doi: 10.1016/S0140-6736(13)62061-9.
    1. WRITING GROUP MEMBERS. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, et al. Heart Disease and Stroke Statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–486. doi: 10.1161/CIRCULATIONAHA.108.191259.
    1. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener H, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600. doi: 10.1056/NEJMoa052980.
    1. Mayo NE, Wood-Dauphinee S, Côté R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–1042. doi: 10.1053/apmr.2002.33984.
    1. Rimmer JH, Wang E. Aerobic exercise training in stroke survivors. Top Stroke Rehabil. 2005;12(1):17–30. doi: 10.1310/L6HG-8X8N-QC9Q-HHM8.
    1. Resnick B, Michael K, Shaughnessy M, Nahm ES, Kobunek S, Sorkin J, et al. Inflated perceptions of physical activity after stroke: pairing self-report with physiologic measures. J Phys Act Health. 2008;5(2):308. doi: 10.1123/jpah.5.2.308.
    1. Bowden MG, Balasubramanian CK, Behrman AL, Kautz SA. Validation of a speed-based classification system using quantitative measures of walking performance Poststroke. Neurorehabil Neural Repair. 2008;22(6):672–675. doi: 10.1177/1545968308318837.
    1. Dhamoon MS, Tai W, Boden-Albala B, Rundek T, Paik MC, Sacco RL, et al. Risk of myocardial infarction or vascular death after first ischemic stroke: the northern Manhattan study. Stroke. 2007;38(6):1752–1758. doi: 10.1161/STROKEAHA.106.480988.
    1. Grundy SM, Pasternak R, Greenland P, Smith S, Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations : a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation. 1999;100(13):1481–1492. doi: 10.1161/01.CIR.100.13.1481.
    1. Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36(10):2206–2211. doi: 10.1161/01.STR.0000181076.91805.89.
    1. Pang MYC, Eng JJ, Dawson AS, McKay HA, Harris JE. A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(10):1667. doi: 10.1111/j.1532-5415.2005.53521.x.
    1. Tudor-Locke C. Promoting lifestyle physical activity: experiences with the first step program. Am J Lifestyle Med. 2009;3(1_suppl):54S. doi: 10.1177/1559827609331710.
    1. King AC, Haskell WL, Young DR, Oka RK, Stefanick ML. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91(10):2596–2604. doi: 10.1161/01.CIR.91.10.2596.
    1. King AC, Haskell WL, Taylor CB, Kraemer HC, DeBusk RF. Group- vs home-based exercise training in healthy older men and women: a community-based clinical trial. JAMA. 1991;266(11):1535–1542. doi: 10.1001/jama.1991.03470110081037.
    1. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364(21):2026–2036. doi: 10.1056/NEJMoa1010790.
    1. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–1783. doi: 10.1056/NEJMoa0911341.
    1. Nadeau S, Duclos C, Bouyer L, Richards CL. Progress in brain research. Netherlands: Elsevier Science & Technology; 2011. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis; pp. 161–180.

Source: PubMed

3
Abonner