Sleep Promoting Effects of IQP-AO-101: A Double-Blind, Randomized, Placebo-Controlled Exploratory Trial

Udo Bongartz, Bee-Kwan Tan, Stephanie Seibt, Gordana Bothe, Ralf Uebelhack, Pee-Win Chong, Natalia Wszelaki, Udo Bongartz, Bee-Kwan Tan, Stephanie Seibt, Gordana Bothe, Ralf Uebelhack, Pee-Win Chong, Natalia Wszelaki

Abstract

Objective: The purpose of this study was to explore the clinical benefit and tolerability of IQP-AO-101 in healthy subjects with sleep complaints.

Methods: This double-blind, randomized, placebo-controlled trial involved fifty subjects with sleep complaints. Subjects with a Pittsburgh Sleep Quality Index (PSQI) score between 6 and 15 were randomized to receive either IQP-AO-101 or placebo for 6 weeks, following a run-in period of one week. Sleep parameters were assessed at baseline and after 1, 4, and 6 weeks using the modified Athens Insomnia Scale (mAIS). Subjects were also instructed to wear an activity tracker and keep a sleep diary during the study. Other questionnaires administered were the Frankfurt Attention Inventory (FAIR-2) and the Profile of Mood States (POMS-65). Blood samples for safety laboratory parameters were taken before and at the end of the study.

Results: After 6 weeks, subjects who consumed IQP-AO-101 reported significant improvements in mAIS scores compared with placebo, including mAIS total score (11.76 ± 6.85 vs 4.00 ± 4.80; p < 0.001); night parameters composite score (5.20 ± 3.80 vs 2.04 ± 3.16; p = 0.001); and day parameters composite score (6.56 ± 4.10 vs 1.96 ± 2.65; p < 0.001). All individual parameters (Items 1 to 8) were also significantly improved from baseline after 6 weeks of IQP-AO-101 intake. Analysis of variance with baseline values as covariates showed statistically significant improvements across all individual parameters for IQP-AO-101 when compared to placebo. The measurements using the activity tracker, sleep diary, FAIR-2, and POMS did not reveal any significant differences between groups. No adverse effects related to the intake of IQP-AO-101 were reported. Tolerability was rated as very good by all the subjects and by the investigator for all cases.

Conclusions: In this study, IQP-AO-101 was well tolerated and efficacious for promoting sleep and enhancing daytime performance in subjects with moderate sleep disturbances.

Clinical trial registration: This trial is registered with ClinicalTrials.gov, no. NCT03114696.

Figures

Figure 1
Figure 1
Study schedule.
Figure 2
Figure 2
Mean mAIS total score (all parameters) during the 6-week IP intake. ∗p < 0.001 vs. placebo. Error bars denote standard error of mean.
Figure 3
Figure 3
Mean scores of individual mAIS parameters throughout the study. P values for comparison against placebo.
Figure 4
Figure 4
Frequency distribution, global assessment of benefit by investigator and subjects.

References

    1. van de Straat V., Bracke P. How well does Europe sleep? A cross-national study of sleep problems in European older adults. International Journal of Public Health. 2015;60(6):643–650. doi: 10.1007/s00038-015-0682-y.
    1. Narayanan S., Potthoff P., Guether B. PND1 prevalence of insomnia in Europe: a comparison of five countries. Value in Health. 2009;12(3):p. A189. doi: 10.1016/S1098-3015(10)74008-0.
    1. Schenck C. H., Mahowald M. W., Sack R. L. Assessment and management of insomnia. Journal of the American Medical Association. 2003;289(19):2475–2479. doi: 10.1001/jama.289.19.2475.
    1. Bolge S. C., Doan J. F., Kannan H., Baran R. W. Association of insomnia with quality of life, work productivity, and activity impairment. Quality of Life Research. 2009;18(4):415–422. doi: 10.1007/s11136-009-9462-6.
    1. Cappuccio F. P., D'Elia L., Strazzullo P., Miller M. A. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414–420. doi: 10.2337/dc09-1124.
    1. Shan Z., Ma H., Xie M., et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38(3):529–537. doi: 10.2337/dc14-2073.
    1. Vgontzas A. N., Liao D., Bixler E. O., Chrousos G. P., Vela-Bueno A. Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep. 2009;32(4):491–497. doi: 10.1093/sleep/32.4.491.
    1. Cappuccio F. P., Cooper D., Delia L., Strazzullo P., Miller M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. European Heart Journal. 2011;32(12):1484–1492. doi: 10.1093/eurheartj/ehr007.
    1. Benca R. M., Peterson M. J. Insomnia and depression. Sleep Medicine. 2008;9(supplement 1):S3–S9. doi: 10.1016/s1389-9457(08)70010-8.
    1. Parthasarathy S., Vasquez M. M., Halonen M., et al. Persistent insomnia is associated with mortality risk. American Journal of Medicine. 2015;128(3):268–275.e2. doi: 10.1016/j.amjmed.2014.10.015.
    1. Glass J., Lanctôt K. L., Herrmann N., Sproule B. A., Busto U. E. Sedative hypnotics in older people with insomnia: meta-analysis of risks and benefits. British Medical Journal. 2005;331(7526, article 1169) doi: 10.1136/bmj.38623.768588.47.
    1. Olson L. G. Hypnotic hazards: Adverse effects of zolpidem and other z-drugs. Australian Prescriber. 2008;31(6):146–149. doi: 10.18773/austprescr.2008.084.
    1. Gunja N. In the Zzz zone: the effects of z-drugs on human performance and driving. Journal of Medical Toxicology. 2013;9(2):163–171. doi: 10.1007/s13181-013-0294-y.
    1. Gunja N. The clinical and forensic toxicology of Z-drugs. Journal of Medical Toxicology. 2013;9(2):155–162. doi: 10.1007/s13181-013-0292-0.
    1. Bent S., Padula A., Moore D., Patterson M., Mehling W. Valerian for sleep: a systematic review and meta-analysis. American Journal of Medicine. 2006;119(12):1005–1012. doi: 10.1016/j.amjmed.2006.02.026.
    1. Ngan A., Conduit R. A double-blind, placebo-controlled investigation of the effects of passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytotherapy Research. 2011;25(8):1153–1159. doi: 10.1002/ptr.3400.
    1. Kennedy D. O., Little W., Scholey A. B. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (lemon balm) Psychosomatic Medicine. 2004;66(4):607–613. doi: 10.1097/01.psy.0000132877.72833.71.
    1. Cases J., Ibarra A., Feuillère N., Roller M., Sukkar S. G. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Mediterranean Journal of Nutrition and Metabolism. 2011;4(3):211–218. doi: 10.1007/s12349-010-0045-4.
    1. Haybar H., Javid A. Z., Haghighizadeh M. H., Valizadeh E., Mohaghegh S. M., Mohammadzadeh A. The effects of Melissa officinalis supplementation on depression, anxiety, stress, and sleep disorder in patients with chronic stable angina. Clinical Nutrition ESPEN. 2018;26:47–52. doi: 10.1016/j.clnesp.2018.04.015.
    1. Waki H., Miyazaki S., Miura T., Uebaba K., Hisajima T. Effect of enzyme-treated asparagus (ETAS) on the stress response substance in a clinical trial. Clinical Nutrition. 2013;32:S233–S234. doi: 10.1016/S0261-5614(13)60606-8.
    1. Takanari J., Nakahigashi J., Sato A., et al. Effect of enzyme-treated asparagus extract (ETAS) on psychological stress in healthy individuals. Journal of Nutritional Science and Vitaminology. 2016;62(3):198–205. doi: 10.3177/jnsv.62.198.
    1. Ito T., Maeda T., Goto K., et al. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects. Journal of Food Science. 2014;79(3):H413–H419. doi: 10.1111/1750-3841.12371.
    1. Kell G., Rao A., Beccaria G., Clayton P., Inarejos-García A. M., Prodanov M. affron® a novel saffron extract (Crocus sativus L.) improves mood in healthy adults over 4 weeks in a double-blind, parallel, randomized, placebo-controlled clinical trial. Complementary Therapies in Medicine. 2017;33:58–64. doi: 10.1016/j.ctim.2017.06.001.
    1. Hosseinzadeh H., Noraei N. B. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytotherapy Research. 2009;23(6):768–774. doi: 10.1002/ptr.2597.
    1. Pitsikas N., Boultadakis A., Georgiadou G., Tarantilis P. A., Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine. 2008;15(12):1135–1139. doi: 10.1016/j.phymed.2008.06.005.
    1. Masaki M., Aritake K., Tanaka H., Shoyama Y., Huang Z.-L., Urade Y. Crocin promotes non-rapid eye movement sleep in mice. Molecular Nutrition & Food Research. 2012;56(2):304–308. doi: 10.1002/mnfr.201100181.
    1. Soeda S., Aritake K., Urade Y., Sato H., Shoyama Y. Neuroprotective activities of saffron and crocin. Advances in Neurobiology. 2016;12:275–292. doi: 10.1007/978-3-319-28383-8_14.
    1. Georgiadou G., Tarantilis P. A., Pitsikas N. Effects of the active constituents of Crocus Sativus L., crocins, in an animal model of obsessive-compulsive disorder. Neuroscience Letters. 2012;528(1):27–30. doi: 10.1016/j.neulet.2012.08.081.
    1. Georgiadou G., Grivas V., Tarantilis P. A., Pitsikas N. Crocins, the active constituents of Crocus Sativus L., counteracted ketamine-induced behavioural deficits in rats. Psychopharmacology. 2014;231(4):717–726. doi: 10.1007/s00213-013-3293-4.
    1. Ji L.-L., Peng J.-B., Fu C.-H., et al. Activation of Sigma-1 receptor ameliorates anxiety-like behavior and cognitive impairments in a rat model of post-traumatic stress disorder. Behavioural Brain Research. 2016;311:408–415. doi: 10.1016/j.bbr.2016.05.056.
    1. Yoo D. Y., Choi J. H., Kim W., et al. Effects of Melissa officinalis L. (Lemon Balm) extract on neurogenesis associated with serum corticosterone and GABA in the mouse dentate gyrus. Neurochemical Research. 2011;36(2):250–257. doi: 10.1007/s11064-010-0312-2.
    1. Awad R., Muhammad A., Durst T., Trudeau V. L., Arnason J. T. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytotherapy Research. 2009;23(8):1075–1081. doi: 10.1002/ptr.2712.
    1. Mhaidat N. M., Alzoubi K. H., Khabour O. F., Tashtoush N. H., Banihani S. A., Abdul-razzak K. K. Exploring the effect of vitamin C on sleep deprivation induced memory impairment. Brain Research Bulletin. 2015;113:41–47. doi: 10.1016/j.brainresbull.2015.02.002.
    1. Alzoubi K. H., Khabour O. F., Rashid B. A., Damaj I. M., Salah H. A. The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behavioural Brain Research. 2012;226(1):205–210. doi: 10.1016/j.bbr.2011.09.017.
    1. Olayaki L. A., Sulaiman S. O., Anoba N. B. Vitamin C prevents sleep deprivation-induced elevation in cortisol and lipid peroxidation in the rat plasma. Nigerian Journal of Physiological Sciences. 2015;30(1-2):5–9.
    1. Siwek M., Dudek D., Paul I. A., et al. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. Journal of Affective Disorders. 2009;118(1–3):187–195. doi: 10.1016/j.jad.2009.02.014.
    1. Rosa A. O., Lin J., Calixto J. B., Santos A. R., Rodrigues A. L. Involvement of NMDA receptors and l-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behavioural Brain Research. 2003;144(1-2):87–93.
    1. Cherasse Y., Urade Y. Dietary zinc acts as a sleep modulator. International Journal of Molecular Sciences. 2017;18(11):p. E2334.
    1. Buysse D. J., Reynolds C. F., III, Monk T. H., Berman S. R., Kupfer D. J. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. World Health Organization. Declaration of Helsinki. Bulletin of the World Health Organization. 2008;86(8):577–656.
    1. Soldatos C. R., Dikeos D. G., Paparrigopoulos T. J. Athens Insomnia Scale: validation of an instrument based on ICD-10 criteria. Journal of Psychosomatic Research. 2000;48(6):555–560. doi: 10.1016/s0022-3999(00)00095-7.
    1. Moosbrugger H., Oehlschlägel J. Frankfurter Aufmerksamkeits-Inventar 2 (FAIR-2) Vol. 2. Bern, Switzerland: Huber; 2011.
    1. McNair D. M., Lorr M., Droppleman L. F. Profile of Mood States, Educational and Industrial Testing Service. San Diego, Calif, USA: Educational and Industrial Testing Service; 1971.
    1. Likert R. A technique for the measurement of attitudes. Archives of Psychology. 1932;22(140):5–55.
    1. De Zambotti M., Baker F. C., Colrain I. M. Validation of sleep-tracking technology compared with polysomnography in adolescents. Sleep. 2015;38(9):1461–1468. doi: 10.5665/sleep.4990.
    1. Marino M., Li Y., Rueschman M. N., et al. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. SLEEP. 2013;36(11):1747–1755. doi: 10.5665/sleep.3142.
    1. Werner K. B., Griffin M. G., Galovski T. E. Objective and subjective measurement of sleep disturbance in female trauma survivors with posttraumatic stress disorder. Psychiatry Research. 2016;240:234–240. doi: 10.1016/j.psychres.2016.04.039.
    1. Dastgerdi A., Radahmadi M., Pourshanazari A., Dastgerdi H. Effects of crocin on learning and memory in rats under chronic restraint stress with special focus on the hippocampal and frontal cortex corticosterone levels. Advanced Biomedical Research. 2017;6(1):p. 157. doi: 10.4103/abr.abr_107_17.
    1. Ghadrdoost B., Vafaei A. A., Rashidy-Pour A., et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. European Journal of Pharmacology. 2011;667(1–3):222–229. doi: 10.1016/j.ejphar.2011.05.012.
    1. Ettehadi H., Mojabi S. N., Ranjbaran M., et al. Aqueous extract of saffron (Crocus sativus) increases brain dopamine and glutamate concentrations in rats. Journal of Behavioral and Brain Science. 2013;3(3):315–319. doi: 10.4236/jbbs.2013.33031.
    1. Lechtenberg M., Schepmann D., Niehues M., Hellenbrand N., Wünsch B., Hensel A. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. Planta Medica. 2008;74:764–772.
    1. Lin S.-H., Chou M.-L., Chen W.-C., et al. A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter. Journal of Ethnopharmacology. 2015;175, article no. 9741:266–272. doi: 10.1016/j.jep.2015.09.018.
    1. Ogasawara J., Ito T., Wakame K., et al. ETAS, an enzyme-treated asparagus extract, attenuates amyloid β-induced cellular disorder in PC12 cells. Natural Product Communications (NPC) 2014;9(4):561–564.
    1. Sakurai T., Ito T., Wakame K., et al. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice. Natural Product Communications (NPC) 2014;9(1):101–106.
    1. Asdaq S. M., Inamdar M. N. Potential of Crocus sativus (saffron) and its constituent, crocin , as hypolipidemic and antioxidant in rats. Applied Biochemistry and Biotechnology. 2010;162(2):358–372. doi: 10.1007/s12010-009-8740-7.
    1. Ochiai T., Shimeno H., Mishima K.-I., et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects. 2007;1770(4):578–584. doi: 10.1016/j.bbagen.2006.11.012.

Source: PubMed

3
Abonner