Association of ambulatory blood pressure with coronary microvascular and cardiac dysfunction in asymptomatic type 2 diabetes

Jian L Yeo, Gaurav S Gulsin, Emer M Brady, Abhishek Dattani, Joanna M Bilak, Anna-Marie Marsh, Manjit Sian, Lavanya Athithan, Kelly S Parke, Joanne Wormleighton, Matthew P M Graham-Brown, Anvesha Singh, J Ranjit Arnold, Claire Lawson, Melanie J Davies, Hui Xue, Peter Kellman, Gerry P McCann, Jian L Yeo, Gaurav S Gulsin, Emer M Brady, Abhishek Dattani, Joanna M Bilak, Anna-Marie Marsh, Manjit Sian, Lavanya Athithan, Kelly S Parke, Joanne Wormleighton, Matthew P M Graham-Brown, Anvesha Singh, J Ranjit Arnold, Claire Lawson, Melanie J Davies, Hui Xue, Peter Kellman, Gerry P McCann

Abstract

Background: Type 2 diabetes (T2D) and hypertension commonly coexist and are associated with subclinical myocardial structural and functional changes. We sought to determine the association between blood pressure (BP) and left ventricular (LV) remodeling, systolic/diastolic function, and coronary microvascular function, among individuals with T2D without prevalent cardiovascular disease.

Methods: Participants with T2D and age-, sex-, and ethnicity-matched controls underwent comprehensive cardiovascular phenotyping including fasting bloods, transthoracic echocardiography, cardiovascular magnetic resonance imaging with quantitative adenosine stress/rest perfusion, and office and 24-h ambulatory BP monitoring. Multivariable linear regression was performed to determine independent associations between BP and imaging markers of remodeling and function in T2D.

Results: Individuals with T2D (n = 205, mean age 63 ± 7 years) and controls (n = 40, mean age 61 ± 8 years) were recruited. Mean 24-h systolic BP, but not office BP, was significantly greater among those with T2D compared to controls (128.8 ± 11.7 vs 123.0 ± 13.1 mmHg, p = 0.006). Those with T2D had concentric LV remodeling (mass/volume 0.91 ± 0.15 vs 0.82 ± 0.11 g/mL, p < 0.001), decreased myocardial perfusion reserve (2.82 ± 0.83 vs 3.18 ± 0.82, p = 0.020), systolic dysfunction (global longitudinal strain 16.0 ± 2.3 vs 17.2 ± 2.1%, p = 0.004) and diastolic dysfunction (E/e' 9.30 ± 2.43 vs 8.47 ± 1.53, p = 0.044) compared to controls. In multivariable regression models adjusted for 14 clinical variables, mean 24-h systolic BP was independently associated with concentric LV remodeling (β = 0.165, p = 0.031), diastolic dysfunction (β = 0.273, p < 0.001) and myocardial perfusion reserve (β = - 0.218, p = 0.016). Mean 24-h diastolic BP was associated with LV concentric remodeling (β = 0.201, p = 0.016).

Conclusion: 24-h ambulatory systolic BP, but not office BP, is independently associated with cardiac remodeling, coronary microvascular dysfunction, and diastolic dysfunction among asymptomatic individuals with T2D. (Clinical trial registration. URL: https://ichgcp.net/clinical-trials-registry/NCT03132129 Unique identifier: NCT03132129).

Keywords: Ambulatory blood pressure; Blood pressure; Diabetic cardiomyopathy; Myocardial perfusion reserve; Type 2 diabetes.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study flowchart. LV indicates left ventricle; MRI: magnetic resonance imaging; T2D: type 2 diabetes
Fig. 2
Fig. 2
Left ventricular (LV) mass/height ratio (A), LV ejection fraction (B), LV mass/volume ratio (LVM/V) (C), myocardial perfusion reserve (MPR) (D), global longitudinal strain (GLS) (E), and diastolic function (E/e') (F) in type 2 diabetes (T2D) compared to controls. NS indicates not significant
Fig. 3
Fig. 3
MRI images displaying the 4-chamber view (A) and mid- ventricular short-axis slice (B) during diastole, global longitudinal strain assessment (GLS) (C), and stress myocardial perfusion map in mid-ventricular short-axis slice (D). Top row images were from a 59-year-old male with type 2 diabetes (T2D), BMI of 40 kg/m2; left ventricular mass (LVM) 146 g, left ventricular end-diastolic volume (LVEDV) 122 mL, left ventricular mass to volume ratio (LVM/V) 1.2 g/mL, GLS 13.0%, stress myocardial blood flow (MBF) 1.2 mL/min/g, rest MBF 0.6 mL/min/g, and myocardial perfusion reserve (MPR) 2.0. The bottom row images were from a 64-year-old male non-diabetic control, BMI of 32 kg/m2; LVM 179 g, LVEDV 223 mL, LVM/V 0.8 g/mL, GLS 15.3%, stress MBF 2.2 mL/min/g, rest MBF 0.6 mL/min/g, and MPR 3.7. Note for GLS with darker blue indicates greater shortening and higher strain
Fig. 4
Fig. 4
Correlation between ambulatory 24-h systolic blood pressure (SBP) with left ventricular mass/volume ratio (LVM/V) (A), myocardial perfusion reserve (MPR) (B), global longitudinal strain (GLS) (C), diastolic function (E/e’) (D), and myocardial extracellular volume fraction (ECV) (E) in people with type 2 diabetes. p values displayed are adjusted for age, male sex, white ethnicity, never smoker, body mass index, HbA1c, number of anti-hypertensives, insulin, sodium-glucose co-transporter-2 inhibitor, and glucagon-like peptide-1 receptor use

References

    1. Wang Y, Yang H, Huynh Q, Nolan M, Negishi K, Marwick TH. Diagnosis of nonischemic stage B heart failure in type 2 diabetes mellitus: optimal parameters for prediction of heart failure. JACC Cardiovasc Imaging. 2018;11(10):1390–1400. doi: 10.1016/j.jcmg.2018.03.015.
    1. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123(3):327–334. doi: 10.1161/CIRCULATIONAHA.108.845792.
    1. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380(9841):601–610. doi: 10.1016/S0140-6736(12)60987-8.
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803. doi: 10.1016/j.jacc.2017.04.025.
    1. Echouffo-Tcheugui JB, Erqou S, Butler J, Yancy CW, Fonarow GC. Assessing the risk of progression from asymptomatic left ventricular dysfunction to overt heart failure: a systematic overview and meta-analysis. JACC Heart Fail. 2016;4(4):237–248. doi: 10.1016/j.jchf.2015.09.015.
    1. Playford D, Strange G, Celermajer DS, Evans G, Scalia GM, Stewart S, et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA) Eur Heart J Cardiovasc Imaging. 2021;22(5):505–515. doi: 10.1093/ehjci/jeaa253.
    1. Graham-Brown MP, Gulsin GS, Parke K, Wormleighton J, Lai FY, Athithan L, et al. A comparison of the reproducibility of two cine-derived strain software programmes in disease states. Eur J Radiol. 2019;113:51–58. doi: 10.1016/j.ejrad.2019.01.026.
    1. Shah RV, Abbasi SA, Kwong RY. Role of cardiac MRI in diabetes. Curr Cardiol Rep. 2014;16(2):449. doi: 10.1007/s11886-013-0449-0.
    1. Kelshiker MA, Seligman H, Howard JP, Rahman H, Foley M, Nowbar AN, et al. Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J. 2021;43(16):1582–1593. doi: 10.1093/eurheartj/ehab775.
    1. Cardoso CRL, Melo JV, Santos TRM, Leite NC, Salles GF. Traditional and non-traditional risk factors for peripheral artery disease development/progression in patients with type 2 diabetes: the Rio de Janeiro type 2 diabetes cohort study. Cardiovasc Diabetol. 2021;20(1):54. doi: 10.1186/s12933-021-01249-y.
    1. Cardoso CRL, Leite NC, Salles GF. Prognostic importance of visit-to-visit blood pressure variability for micro- and macrovascular outcomes in patients with type 2 diabetes: The Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc Diabetol. 2020;19(1):50. doi: 10.1186/s12933-020-01030-7.
    1. Hagglund O, Svensson P, Linde C, Ostergren J. Ambulatory blood pressure monitoring and blood pressure control in patients with coronary artery disease—a randomized controlled trial. Int J Cardiol Hypertens. 2021;8:100074. doi: 10.1016/j.ijchy.2020.100074.
    1. Salazar MR, Espeche WG, Aizpurua M, Sisnieguez CE, Sisnieguez BC, Dulbecco CA, et al. Should the first blood pressure reading be discarded? J Hum Hypertens. 2015;29(6):373–378. doi: 10.1038/jhh.2014.98.
    1. O'Brien E, Mee F, Atkins N, O'Malley K. Accuracy of the SpaceLabs 90207 determined by the British Hypertension Society protocol. J Hypertens. 1991;9(6):573–574. doi: 10.1097/00004872-199106000-00016.
    1. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. Ambulatory blood pressure. An independent predictor of prognosis in essential hypertension. Hypertension. 1994;24(6):793–801. doi: 10.1161/01.HYP.24.6.793.
    1. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. doi: 10.1016/j.echo.2014.10.003.
    1. Gulsin GS, Henson J, Brady EM, Sargeant JA, Wilmot EG, Athithan L, et al. Cardiovascular determinants of aerobic exercise capacity in adults with type 2 diabetes. Diabetes Care. 2020;43(9):2248–2256. doi: 10.2337/dc20-0706.
    1. Kellman P, Hansen MS, Nielles-Vallespin S, Nickander J, Themudo R, Ugander M, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. J Cardiovasc Magn Reson. 2017;19(1):43. doi: 10.1186/s12968-017-0355-5.
    1. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2016;37(15):1196–1207. doi: 10.1093/eurheartj/ehv529.
    1. Greenwood JP, Ripley DP, Berry C, McCann GP, Plein S, Bucciarelli-Ducci C, et al. Effect of care guided by cardiovascular magnetic resonance, myocardial perfusion scintigraphy, or NICE guidelines on subsequent unnecessary angiography rates: the CE-MARC 2 randomized clinical trial. JAMA. 2016;316(10):1051–1060. doi: 10.1001/jama.2016.12680.
    1. Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380(25):2418–2428. doi: 10.1056/NEJMoa1716734.
    1. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89. doi: 10.1186/s12968-016-0308-4.
    1. Gulsin GS, Swarbrick DJ, Athithan L, Brady EM, Henson J, Baldry E, et al. Effects of low-energy diet or exercise on cardiovascular function in working-age adults with type 2 diabetes: a prospective, randomized, open-label, blinded end point trial. Diabetes Care. 2020;43(6):1300–1310. doi: 10.2337/dc20-0129.
    1. Cao Y, Zeng W, Cui Y, Kong X, Wang M, Yu J, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain. Cardiovasc Diabetol. 2018;17(1):7. doi: 10.1186/s12933-017-0651-2.
    1. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-Hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA Study. Circulation. 2018;9(18):2089. doi: 10.1161/CIRCULATIONAHA.118.037076.
    1. Sun F, Wu S, Guo S, Yu K, Yang Z, Li L, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract. 2015;110(1):26–37. doi: 10.1016/j.diabres.2015.07.015.
    1. Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL., Jr Imaging, biomarker, and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. JACC Heart Fail. 2019;7(9):782–794. doi: 10.1016/j.jchf.2019.06.004.
    1. Scirica BM, Mosenzon O, Bhatt DL, Udell JA, Steg PG, McGuire DK, et al. Cardiovascular outcomes according to urinary albumin and kidney disease in patients with type 2 diabetes at high cardiovascular risk: observations from the SAVOR-TIMI 53 Trial. JAMA Cardiol. 2018;3(2):155–163. doi: 10.1001/jamacardio.2017.4228.
    1. Cuspidi C, Facchetti R, Bombelli M, Tadic M, Sala C, Grassi G, et al. High normal blood pressure and left ventricular hypertrophy echocardiographic findings from the PAMELA population. Hypertension. 2019;73(3):612–619. doi: 10.1161/HYPERTENSIONAHA.118.12114.
    1. Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation. 2003;107(3):448–454. doi: 10.1161/01.CIR.0000045671.62860.98.
    1. Bella JN, Devereux RB, Roman MJ, Palmieri V, Liu JE, Paranicas M, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study) Am J Cardiol. 2001;87(11):1260–1265. doi: 10.1016/S0002-9149(01)01516-8.
    1. Gonzalez A, Ravassa S, Lopez B, Moreno MU, Beaumont J, San Jose G, et al. Myocardial remodeling in hypertension. Hypertension. 2018;72(3):549–558. doi: 10.1161/HYPERTENSIONAHA.118.11125.
    1. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638. doi: 10.1161/CIRCRESAHA.117.311586.
    1. Zhang K, Chen J, Liu Y, Wang T, Wang L, Wang J, et al. Diastolic blood pressure reduction contributes more to the regression of left ventricular hypertrophy: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2013;27(11):698–706. doi: 10.1038/jhh.2013.20.
    1. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(21):2625–2641. doi: 10.1016/j.jacc.2018.09.042.
    1. Nakajima H, Onishi K, Kurita T, Ishida M, Nagata M, Kitagawa K, et al. Hypertension impairs myocardial blood perfusion reserve in subjects without regional myocardial ischemia. Hypertens Res. 2010;33(11):1144–1149. doi: 10.1038/hr.2010.140.
    1. Rosen BD, Lima JA, Nasir K, Edvardsen T, Folsom AR, Lai S, et al. Lower myocardial perfusion reserve is associated with decreased regional left ventricular function in asymptomatic participants of the multi-ethnic study of atherosclerosis. Circulation. 2006;114(4):289–297. doi: 10.1161/CIRCULATIONAHA.105.588525.
    1. Knott KD, Seraphim A, Augusto JB, Xue H, Chacko L, Aung N, et al. The prognostic significance of quantitative myocardial perfusion: an artificial intelligence-based approach using perfusion mapping. Circulation. 2020;141(16):1282–1291.
    1. Zhou W, Brown JM, Bajaj NS, Chandra A, Divakaran S, Weber B, et al. Hypertensive coronary microvascular dysfunction: a subclinical marker of end organ damage and heart failure. Eur Heart J. 2020;41(25):2366–2375. doi: 10.1093/eurheartj/ehaa191.
    1. Leung M, Wong VW, Hudson M, Leung DY. Impact of improved glycemic control on cardiac function in type 2 diabetes mellitus. Circ Cardiovasc Imaging. 2016;9(3):e003643. doi: 10.1161/CIRCIMAGING.115.003643.
    1. Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):78. doi: 10.1186/s12933-017-0557-z.
    1. Sera F, Jin Z, Russo C, Lee ES, Schwartz JE, Rundek T, et al. Relationship of office and ambulatory blood pressure with left ventricular global longitudinal strain. Am J Hypertens. 2016;29(11):1261–1267. doi: 10.1093/ajh/hpv188.
    1. Shin SM, Shim WJ, Park SM. Early changes of left ventricular function in young adults with never-treated hypertension and no left ventricular hypertrophy: relationships to ambulatory blood pressure monitoring. Clin Exp Hypertens. 2014;36(7):517–523. doi: 10.3109/10641963.2013.863326.
    1. Kim D, Shim CY, Hong GR, Park S, Cho IJ, Chang HJ, et al. Impact of ambulatory blood pressure on early cardiac and renal dysfunction in hypertensive patients without clinically apparent target organ damage. Yonsei Med J. 2018;59(2):265–272. doi: 10.3349/ymj.2018.59.2.265.
    1. McAdam J, Singh A, Marsh A, Lai F, Greenwood J, McCann G, editors. Echocardiographic and MRI assessment of myocardial strain and strain rates using speckle tracking and feature tracking in asymptomatic aortic stenosis. European Heart Journal; 2015: Oxford Univ Press Great Clarendon St, Oxford Ox2 6dp, England.
    1. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: practitioner-based nationwide JAMP study. Circulation. 2020;142(19):1810–1820. doi: 10.1161/CIRCULATIONAHA.120.049730.
    1. Sattar N, Rawshani A, Franzen S, Rawshani A, Svensson AM, Rosengren A, et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139(19):2228–2237. doi: 10.1161/CIRCULATIONAHA.118.037885.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720.
    1. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303.
    1. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–1461. doi: 10.1056/NEJMoa2107038.
    1. Giugliano D, Scappaticcio L, Longo M, Caruso P, Maiorino MI, Bellastella G, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20(1):189. doi: 10.1186/s12933-021-01366-8.
    1. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: The EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140(21):1693–1702. doi: 10.1161/CIRCULATIONAHA.119.042375.
    1. Hermida RC, Smolensky MH, Balan H, Castriotta RJ, Crespo JJ, Dagan Y, et al. Guidelines for the design and conduct of human clinical trials on ingestion-time differences—chronopharmacology and chronotherapy—of hypertension medications. Chronobiol Int. 2021;38(1):1–26. doi: 10.1080/07420528.2020.1850468.

Source: PubMed

3
Abonner