Physiological role for nitrate-reducing oral bacteria in blood pressure control

Vikas Kapil, Syed M A Haydar, Vanessa Pearl, Jon O Lundberg, Eddie Weitzberg, Amrita Ahluwalia, Vikas Kapil, Syed M A Haydar, Vanessa Pearl, Jon O Lundberg, Eddie Weitzberg, Amrita Ahluwalia

Abstract

Circulating nitrate (NO(3)(-)), derived from dietary sources or endogenous nitric oxide production, is extracted from blood by the salivary glands, accumulates in saliva, and is then reduced to nitrite (NO(2)(-)) by the oral microflora. This process has historically been viewed as harmful, because nitrite can promote formation of potentially carcinogenic N-nitrosamines. More recent research, however, suggests that nitrite can also serve as a precursor for systemic generation of vasodilatory nitric oxide, and exogenous administration of nitrate reduces blood pressure in humans. However, whether oral nitrate-reducing bacteria participate in "setting" blood pressure is unknown. We investigated whether suppression of the oral microflora affects systemic nitrite levels and hence blood pressure in healthy individuals. We measured blood pressure (clinic, home, and 24-h ambulatory) in 19 healthy volunteers during an initial 7-day control period followed by a 7-day treatment period with a chlorhexidine-based antiseptic mouthwash. Oral nitrate-reducing capacity and nitrite levels were measured after each study period. Antiseptic mouthwash treatment reduced oral nitrite production by 90% (p < 0.001) and plasma nitrite levels by 25% (p = 0.001) compared to the control period. Systolic and diastolic blood pressure increased by 2-3 .5mmHg, increases correlated to a decrease in circulating nitrite concentrations (r(2) = 0.56, p = 0.002). The blood pressure effect appeared within 1 day of disruption of the oral microflora and was sustained during the 7-day mouthwash intervention. These results suggest that the recycling of endogenous nitrate by oral bacteria plays an important role in determination of plasma nitrite levels and thereby in the physiological control of blood pressure.

Copyright © 2012 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Effects of a 7-day twice-daily use of antiseptic mouthwash on (A) salivary nitrite concentration, (B) plasma nitrite concentration, (C) urinary nitrite concentration, (D) clinic systolic blood pressure, and (E) the relationship between plasma nitrite concentration and clinic systolic blood pressure. Statistical significance was determined using paired Student t test for n = 19. Correlations were determined using Pearson’s correlation coefficient determination.
Fig. 2
Fig. 2
Effects of a 7-day, twice-daily use of antiseptic mouthwash on (A) salivary nitrate concentration, (B) plasma nitrate concentration, and (C) urinary nitrate concentration in healthy volunteers. Statistical significance was determined using paired Student t test for n = 19.
Fig. 3
Fig. 3
Effects of a 7-day, twice-daily use of antiseptic mouthwash on oral nitrate-reducing capacity. The amount of nitrite in the expelled contents of the oral cavity, after instillation of 10 ml of 0, 800 μmol/L, or 8 mmol/L KNO3 solution delivering 0, 0.8, or 80 μmol of nitrate, respectively, which was held in the mouth for 5 min, of healthy volunteers was measured. Data are expressed as means ± SEM (n = 19) and statistical significance was determined using repeated-measures two-way ANOVA followed by Bonferroni posttests.
Fig. 4
Fig. 4
Effects of a 7-day, twice-daily use of antiseptic mouthwash on systolic and diastolic blood pressure in healthy volunteers measured (A) in the clinic, (B) by 24-h ambulatory monitoring, and (C) at home and the daily profiles of home (D) systolic and (E) diastolic blood pressure during the 7-day study periods in healthy volunteers. Data are expressed as means ± SEM (n = 19) and statistical significance was determined using repeated-measures two-way ANOVA.
Fig. 5
Fig. 5
Effects of a 7-day, twice-daily use of antiseptic mouthwash on 24-h ambulatory blood pressure, separated into daytime (A) systolic and (B) diastolic blood pressure and nighttime (C) systolic and (D) diastolic blood pressure. Data are expressed as means ± SEM (n = 19) and statistical significance was determined using paired Student t test.

References

    1. Ratcliff P.A., Johnson P.W. The relationship between oral malodor, gingivitis, and periodontitis: a review. J. Periodontol. 1999;70:485–489.
    1. Desvarieux M., Demmer R.T., Rundek T., Boden-Albala B., Jacobs D.R., Papapanou P.N., Sacco R.L. Relationship between periodontal disease, tooth loss, and carotid artery plaque: the Oral Infections and Vascular Disease Epidemiology Study (INVEST) Stroke. 2003;34:2120–2125.
    1. Desvarieux M., Demmer R.T., Rundek T., Boden-Albala B., Jacobs D.R., Sacco R.L., Papapanou P.N. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST) Circulation. 2005;111:576–582.
    1. Elmore J.G., Horwitz R.I. Oral cancer and mouthwash use: evaluation of the epidemiologic evidence. Otolaryngol. Head Neck Surg. 1995;113:253–261.
    1. Fedorowicz, Z.; Aljufairi, H.; Nasser, M.; Outhouse, T.L.; Pedrazzi, V. Mouthrinses for the treatment of halitosis. Cochrane Database Syst. Rev. CD006701; 2008.
    1. Chadwick B., White D., Lader D., Pitts N. Preventative behaviour and risks to oral health. In: O'Sullivan I., editor. Adult Dental Health Survey 2009. Health and Social Care Information Centre; Leeds: 2011. pp. 1–44.
    1. Tannenbaum S.R., Weisman M., Fett D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet. Toxicol. 1976;14:549–552.
    1. Spiegelhalder B., Eisenbrand G., Preussmann R. Influence of dietary nitrate on nitrite content of human saliva: possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 1976;14:545–548.
    1. Tannenbaum S.R., Correa P. Nitrate and gastric cancer risks. Nature. 1985;317:675–676.
    1. Ignarro L.J., Fukuto J.M., Griscavage J.M., Rogers N.E., Byrns R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA. 1993;90:8103–8107.
    1. Fukuto J.M., Cho J.Y., Switzer C.H. The chemical properties of nitric oxide and related nitrogen oxides. In: Ignarro L., editor. Nitric Oxide: Biology and Pathobiology. Academic Press; London: 2000. pp. 23–40.
    1. Modin A., Björne H., Herulf M., Alving K., Weitzberg E., Lundberg J.O. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol. Scand. 2001;171:9–16.
    1. Cosby K., Partovi K.S., Crawford J.H., Patel R.P., Reiter C.D., Martyr S., Yang B.K., Waclawiw M.A., Zalos G., Xu X., Huang K.T., Shields H., Kim-Shapiro D.B., Schechter A.N., Cannon R.O., Gladwin M.T. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 2003;9:1498–1505.
    1. Lundberg J.O., Weitzberg E., Gladwin M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discovery. 2008;7:156–167.
    1. Lundberg J.O., Gladwin M.T., Ahluwalia A., Benjamin N., Bryan N.S., Butler A., Cabrales P., Fago A., Feelisch M., Ford P.C., Freeman B.A., Frenneaux M., Friedman J., Kelm M., Kevil C.G., Kim-Shapiro D.B., Kozlov A.V., Lancaster J.R., Lefer D.J., McColl K., McCurry K., Patel R.P., Petersson J., Rassaf T., Reutov V.P., Richter-Addo G.B., Schechter A., Shiva S., Tsuchiya K., van Faassen E.E., Webb A.J., Zuckerbraun B.S., Zweier J.L., Weitzberg E. Nitrate and nitrite in biology, nutrition and therapeutics. Nat. Chem. Biol. 2009;5:865–869.
    1. Dejam A., Hunter C.J., Tremonti C., Pluta R.M., Hon Y.Y., Grimes G., Partovi K., Pelletier M.M., Oldfield E.H., Cannon R.O., Schechter A.N., Gladwin M.T. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116:1821–1831.
    1. Maher A.R., Milsom A.B., Gunaruwan P., Abozguia K., Ahmed I., Weaver R.A., Thomas P., Ashrafian H., Born G.V., James P.E., Frenneaux M.P. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117:670–677.
    1. Webb A., Bond R., McLean P., Uppal R., Benjamin N., Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia–reperfusion damage. Proc. Natl. Acad. Sci. USA. 2004;101:13683–13688.
    1. Duranski M.R., Greer J.J., Dejam A., Jaganmohan S., Hogg N., Langston W., Patel R.P., Yet S.F., Wang X., Kevil C.G., Gladwin M.T., Lefer D.J. Cytoprotective effects of nitrite during in vivo ischemia–reperfusion of the heart and liver. J. Clin. Invest. 2005;115:1232–1240.
    1. Pluta R.M., Dejam A., Grimes G., Gladwin M.T., Oldfield E.H. Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage. JAMA. 2005;293:1477–1484.
    1. Tripatara P., Patel N.S., Webb A., Rathod K., Lecomte F.M., Mazzon E., Cuzzocrea S., Yaqoob M.M., Ahluwalia A., Thiemermann C. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: role for xanthine oxidoreductase. J. Am. Soc. Nephrol. 2007;18:570–580.
    1. Larsen F.J., Schiffer T.A., Borniquel S., Sahlin K., Ekblom B., Lundberg J.O., Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13:149–159.
    1. Larsen F.J., Ekblom B., Sahlin K., Lundberg J.O., Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 2006;355:2792–2793.
    1. Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S., Rashid R., Miall P., Deanfield J., Benjamin N., MacAllister R., Hobbs A.J., Ahluwalia A. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–790.
    1. Kapil V., Milsom A.B., Okorie M., Maleki-Toyserkani S., Akram F., Rehman F., Arghandawi S., Pearl V., Benjamin N., Loukogeorgakis S., MacAllister R., Hobbs A.J., Webb A.J., Ahluwalia A. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56:274–281.
    1. Tannenbaum S.R., Sinskey A.J., Weisman M., Bishop W. Nitrite in human saliva: its possible relationship to nitrosamine formation. J. Natl. Cancer Inst. 1974;53:79–84.
    1. Ishiwata H., Tanimura A., Ishidate M. Studies on in vivo formation of nitroso compounds (III) Food Hyg. Saf. Sci. 1975;16:89–92.
    1. Duncan C., Dougall H., Johnston P., Green S., Brogan R., Leifert C., Smith L., Golden M., Benjamin N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995;1:546–551.
    1. Doel J.J., Benjamin N., Hector M.P., Rogers M., Allaker R.P. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral Sci. 2005;113:14–19.
    1. Kortboyer, J. M.; Colbers, E. P. H.; Vaessen, H. A. M. G.; Groen, K.; Zeilmaker, M. J.; Slob, W.; Speilers, G. J. A.; Meulenbelt, J. A pilot-study to investigate nitrate and nitrite kinetics in healthy volunteers with normal and artificially increased gastric pH after sodium nitrate ingestion. In: International Workshop on Health Aspects of Nitrate and Its Metabolites (Particularly Nitrite). Bilthoven: Council of Europe Press; 1994:269-284.
    1. Qin L., Liu X., Sun Q., Fan Z., Xia D., Ding G., Ong H.L., Adams D., Gahl W.A., Zheng C., Qi S., Jin L., Zhang C., Gu L., He J., Deng D., Ambudkar I.S., Wang S. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA. 2012;109:13434–13439.
    1. Lundberg J.O., Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004;37:395–400.
    1. Bahra M., Kapil V., Pearl V., Ghosh S., Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide. 2012;26:197–202.
    1. Shingles R., Roh M.H., McCarty R.E. Direct measurement of nitrite transport across erythrocyte membrane vesicles using the fluorescent probe, 6-methoxy-N-(3-sulfopropyl) quinolinium. J. Bioenerg. Biomembr. 1997;29:611–616.
    1. Vitturi D.A., Teng X., Toledo J.C., Matalon S., Lancaster J.R., Patel R.P. Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation. Am. J. Physiol. Heart Circ. Physiol. 2009;296:H1398–407.
    1. Shiva S., Frizzell S., Gladwin M.T. Nitrite and heme globins: reaction mechanisms and physiological targets. In: Ignarro L., editor. Nitric Oxide: Biology and Pathobiology. Elsevier; San Diego: 2010. pp. 605–626.
    1. Webb A.J., Ahluwalia A. Mechanisms of nitrite reduction in ischemia in the cardiovascular system. In: Ignarro L., editor. Nitric Oxide: Biology and Pathobiology. Elsevier; San Diego: 2010. pp. 555–586.
    1. Govoni M., Jansson E.A., Weitzberg E., Lundberg J.O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide. 2008;19:333–337.
    1. Williams, B.; Poulter, N. R.; Brown, M. J.; Davis, M.; McInnes, G. T.; Potter, J. F.; Sever, P. S.; Thom, S. M. British Hypertension Society guidelines for hypertension management 2004 (BHS-IV): summary. BMJ 328:634-640; 2004.
    1. Bäckhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host–bacterial mutualism in the human intestine. Science. 2005;307:1915–1920.
    1. Packer P.J., Leach S.A., Duncan S.N., Thompson M.H., Hill M.J. The effect of different sources of nitrate exposure on urinary nitrate recovery in humans and its relevance to the methods of estimating nitrate exposure in epidemiological studies. Carcinogenesis. 1989;10:1989–1996.
    1. Lundberg J.O., Weitzberg E., Cole J.A., Benjamin N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2004;2:593–602.
    1. Batchelor A.M., Bartus K., Reynell C., Constantinou S., Halvey E.J., Held K.F., Dostmann W.R., Vernon J., Garthwaite J. Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc. Natl. Acad. Sci. USA. 2010;107:22060–22065.
    1. Webb A.J., Milsom A.B., Rathod K.S., Chu W.L., Qureshi S., Lovell M.J., Lecomte F.M., Perrett D., Raimondo C., Khoshbin E., Ahmed Z., Uppal R., Benjamin N., Hobbs A.J., Ahluwalia A. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ. Res. 2008;103:957–964.
    1. Stamler J.S., Jia L., Eu J.P., McMahon T.J., Demchenko I.T., Bonaventura J., Gernert K., Piantadosi C.A. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276:2034–2037.
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Collaboration P.S. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913.
    1. Tonetti M.S., D'Aiuto F., Nibali L., Donald A., Storry C., Parkar M., Suvan J., Hingorani A.D., Vallance P., Deanfield J. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 2007;356:911–920.
    1. Koren O., Spor A., Felin J., Fåk F., Stombaugh J., Tremaroli V., Behre C.J., Knight R., Fagerberg B., Ley R.E., Bäckhed F. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl. 1):4592–4598.
    1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486:207-214; 2012.

Source: PubMed

3
Abonner