Levosimendan-induced venodilation is mediated by opening of potassium channels

Daniel Burkhoff, Stuart Rich, Piero Pollesello, Zoltán Papp, Daniel Burkhoff, Stuart Rich, Piero Pollesello, Zoltán Papp

Abstract

Unique vascular responses adhere to the cardiovascular efficacy of the inodilator levosimendan. In particular, selective venodilation appears to explain its clinical benefit during pulmonary hypertension complicated by heart failure with preserved ejection fraction. Vasodilators increase vessel diameter in various parts of the vascular system to different degrees and thereby influence blood pressure, its distribution, and organ perfusion depending on their mechanisms of action. Levosimendan and its long-lived active metabolite OR-1896 mobilize a set of vasodilatory mechanisms, that is, the opening of the ATP-sensitive K+ channels and other K+ channels on top of a highly selective inhibition of the phosphodiesterase III enzyme. A vessel-specific combination of the above vasodilator mechanisms-in concert with cardiac effects and cardiovascular reflex regulations-illustrates the pharmacological profile of levosimendan in various cardiovascular disorders. While levosimendan has been known to be an inotrope, its properties as an activator of ATP-sensitive K+ channels have gone largely ignored with respect to clinical applications. Here, we provide a summary of what is known about the ATP-sensitive K+ channel properties in preclinical studies and now for the first time, its ATP-sensitive K+ channel properties in a clinical trial.

Trial registration: ClinicalTrials.gov NCT03541603.

Keywords: Heart failure with preserved ejection fraction; Levosimendan; Pharmacology; Pulmonary hypertension; Therapy; Venodilation.

Conflict of interest statement

S.R. is Chief Medical Officer at Tenax Therapeutics. P.P. is full time employee at Orion Pharma. Z.P. and D.B. have nothing to declare.

© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Figures

Figure 1
Figure 1
Schematic illustration of levosimendan‐induced putative vasodilating mechanisms. Levosimendan is capable to mobilize a set of vasodilatory mechanisms. Stimulatory and inhibitory effects are illustrated by green and red arrows, respectively. Effects of levosimendan are highlighted by dashed arrows. 5′AMP: 5′ adenosine monophosphate; AC, adenylate cyclase; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cylic guanosine monophosphate; GTP, guanosine triphosphate; l‐Arg: l‐arginine; MLCK, myosin light chain kinase; NO, nitric oxide; NOS, nitric oxide synthase; PDE III, phosphodiesterase III; PDE IV, phosphodiesterase IV; PKA: protein kinase A; PKG, protein kinase G; sGC, soluble guanylate cyclase. See the text for further abbreviations and details.
Figure 2
Figure 2
Hypothetical explanation for increased tissue sensitivity of levosimendan‐evoked vasodilation with marked venodilation. An increased level of levosimendan‐induced vasodilation can relate to more than a single vasodilator effector mechanism.
Figure 3
Figure 3
Stressed and unstressed vascular volume. The volume inside a vessel at near zero transmural pressure is termed ‘unstressed volume’ (blue). It fills the system without exerting tension in the vessel wall. The blood volume that creates positive transmural pressure via the elastic recoil of the vessel wall is termed ‘stressed volume’ (red). Mean circulatory filling pressure (MCFP) is a function of stressed volume and vascular compliance; compliance is the slope of the pressure–volume curve above the unstressed volume. (A) Cross section of a blood vessel. (B) The relationship between blood volume and MCFP. (C) The venous system contains approximately 70% of the blood volume. The splanchnic vascular bed serves as a reservoir and will adjust the amount of venous return based on signalling from the autonomic nervous system. In chronic HF, the increased sympathetic tone associated with activation of the renin–angiotensin–aldosterone system will also activate the splanchnic circulation to increase venous return, referred to SBV. This will increase the CVP and the pulmonary capillary wedge pressure. Q, cardiac output; R, systemic vascular resistance; RA: right atrium. Panels (A) and (B) freely adapted from Grübler et al. Panel (C) is freely adapted from Noel‐Morgan and Muir.

References

    1. Papp Z, Agostoni P, Alvarez J, Bettex D, Bouchez S, Brito D, Černý V, Comin‐Colet J, Crespo‐Leiro MG, Delgado JF, Édes I, Eremenko AA, Farmakis D, Fedele F, Fonseca C, Fruhwald S, Girardis M, Guarracino F, Harjola VP, Heringlake M, Herpain A, Heunks LMA, Husebye T, Ivancan V, Karason K, Kaul S, Kivikko M, Kubica J, Masip J, Matskeplishvili S, Mebazaa A, Nieminen MS, Oliva F, Papp JG, Parissis J, Parkhomenko A, Põder P, Pölzl G, Reinecke A, Ricksten SE, Riha H, Rudiger A, Sarapohja T, Schwinger RHG, Toller W, Tritapepe L, Tschöpe C, Wikström G, Lewinski DV, Vrtovec B, Pollesello P. Levosimendan efficacy and safety: 20 years of SIMDAX in clinical use. J Cardiovasc Pharmacol 2020; 76: 4–22.
    1. Papp Z, Édes I, Fruhwald S, De Hert SG, Salmenperä M, Leppikangas H, Mebazaa A, Landoni G, Grossini E, Caimmi P, Morelli A, Guarracino F, Schwinger RH, Meyer S, Algotsson L, Wikström BG, Jörgensen K, Filippatos G, Parissis JT, González MJ, Parkhomenko A, Yilmaz MB, Kivikko M, Pollesello P, Follath F. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol 2012; 159: 82–87.
    1. Yildiz O. Vasodilating mechanisms of levosimendan: involvement of K channels. J Pharmacol Sci 2007; 104: 1–5.
    1. Siegel G, Emden J, Wenzel K, Mironneau J, Stock G. Potassium channel activation in vascular smooth muscle. Adv Exp Med Biol 1992; 311: 53–72.
    1. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, Harjola VP, Mitrovic V, Abdalla M, Sandell EP, Lehtonen L. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low‐output heart failure (the LIDO study): a randomised double‐blind trial. Lancet 2002; 360: 196–202.
    1. Rieg AD, Rossaint R, Verjans E, Maihöfer NA, Uhlig S, Martin C. Levosimendan relaxes pulmonary arteries and veins in precision‐cut lung slices ‐ the role of KATP‐channels, cAMP and cGMP. PLoS One. 2013; 8: e66195.
    1. Rieg AD, Suleiman S, Bünting NA, Verjans E, Spillner J, Schnöring H, Kalverkamp S, Schröder T, von Stillfried S, Braunschweig T, Schälte G, Uhlig S, Martin C. Levosimendan reduces segmental pulmonary vascular resistance in isolated perfused rat lungs and relaxes human pulmonary vessels. PLoS One. 2020; 15: e0233176.
    1. Burkhoff D, Borlaug BA, Shah SJ, Zolty R, Tedford RJ, Thenappan T, Zamanian RT, Mazurek JA, Rich JD, Simon MA, Chung ES, Raza F, Majure DT, Lewis GD, Preston IR, Rich S. Levosimendan improves hemodynamics and exercise tolerance in PH‐HFpEF: results of the randomized placebo‐controlled HELP trial. JACC. Heart Fail. 2021. Apr 3; 9: 360–370.
    1. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 2011; 4: 669–675.
    1. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. Levosimendan, a novel Ca2 sensitizer, activates the glibenclamide‐sensitive K channel in rat arterial myocytes. Eur J Pharmacol 1997; 333: 249–259.
    1. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. The novel calcium sensitizer levosimendan activates the ATP‐sensitive K channel in rat ventricular cells. J Pharmacol Exp Ther 1997; 283: 375–383.
    1. Yildiz O, Seyrek M, Yildirim V, Demirkilic U, Nacitarhan C. Potassium channel‐related relaxation by levosimendan in the human internal mammary artery. Ann Thorac Surg 2006; 81: 1715–1719.
    1. Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated Guinea‐pig heart by opening ATP‐sensitive potassium channels. J Cardiovasc Pharmacol 2001; 37: 367–374.
    1. Ozdem SS, Yalcin O, Meiselman HJ, Baskurt OK, Usta C. The role of potassium channels in relaxant effect of levosimendan in rat small mesenteric arteries. Cardiovasc Drugs Ther 2006; 20: 123–127.
    1. Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK. Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 2006; 290: F1453–F1462.
    1. Pataricza J, Krassói I, Höhn J, Kun A, Papp JG. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 2003; 17: 115–121.
    1. Yildiz O, Nacitarhan C, Seyrek M. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery. J Soc Gynecol Investig 2006; 13: 312–315.
    1. Usta C, Eksert B, Gölbasi I, Bigat Z, Ozdem SS. The role of potassium channels in the vasodilatory effect of levosimendan in human internal thoracic arteries. Eur J Cardiothorac Surg 2006; 30: 329–332.
    1. Akar F, Manavbasi Y, Parlar AI, Ulus AT, Katircioglu SF. The gender differences in the relaxation to levosimendan of human internal mammary artery. Cardiovasc Drugs Ther 2007; 21: 331–338.
    1. Gruhn N, Nielsen‐Kudsk JE, Theilgaard S, Bang L, Olesen SP, Aldershvile J. Coronary vasorelaxant effect of levosimendan, a new inodilator with calcium‐sensitizing properties. J Cardiovasc Pharmacol 1998; 31: 741–749.
    1. Szilágyi S, Pollesello P, Levijoki J, Kaheinen P, Haikala H, Edes I, Papp Z. The effects of levosimendan and OR‐1896 on isolated hearts, myocyte‐sized preparations and phosphodiesterase enzymes of the Guinea pig. Eur J Pharmacol 2004; 486: 67–74.
    1. Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G. Levosimendan induces NO production through p38 MAPK, ERK and akt in porcine coronary endothelial cells: role for mitochondrial K (ATP) channel. Br J Pharmacol 2009; 156: 250–261.
    1. Caimmi PP, Molinari C, Uberti F, Micalizzi E, Valente G, Mary DA, Vacca G, Grossini E. Intracoronary levosimendan prevents myocardial ischemic damages and activates survival signaling through ATP‐sensitive potassium channel and nitric oxide. Eur J Cardiothorac Surg 2011; 39: e59–e67.
    1. Erdei N, Papp Z, Pollesello P, Edes I, Bagi Z. The levosimendan metabolite OR‐1896 elicits vasodilation by activating the K (ATP) and BK (Ca) channels in rat isolated arterioles. Br J Pharmacol 2006; 148: 696–702.
    1. Gödény I, Pollesello P, Edes I, Papp Z, Bagi Z. Levosimendan and its metabolite OR‐1896 elicit KATP channel‐dependent dilation in resistance arteries in vivo. Pharmacol Rep 2013; 65: 1304–1310.
    1. Pataricza J, Hõhn J, Petri A, Balogh A, Papp JG. Comparison of the vasorelaxing effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharm Pharmacol 2000; 52: 213–217.
    1. Höhn J, Pataricza J, Petri A, Tóth GK, Balogh A, Varró A, Papp JG. Levosimendan interacts with potassium channel blockers in human saphenous veins. Basic Clin Pharmacol Toxicol 2004; 94: 271–273.
    1. De Witt BJ, Ibrahim IN, Bayer E, Fields AM, Richards TA, Banister RE, Kaye AD. An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 2002; 94: 1427–1433 table of contents.
    1. Revermann M, Schloss M, Mieth A, Babelova A, Schröder K, Neofitidou S, Buerkl J, Kirschning T, Schermuly RT, Hofstetter C, Brandes RP. Levosimendan attenuates pulmonary vascular remodeling. Intensive Care Med 2011; 37: 1368–1377.
    1. Kopustinskiene DM, Pollesello P, Saris NE. Levosimendan is a mitochondrial K (ATP) channel opener. Eur J Pharmacol 2001; 428: 311–314.
    1. Kopustinskiene DM, Pollesello P, Saris NE. Potassium‐specific effects of levosimendan on heart mitochondria. Biochem Pharmacol 2004; 68: 807–812.
    1. Kersten JR, Montgomery MW, Pagel PS, Warltier DC. Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K (ATP) channels. Anesth Analg 2000; 90: 5–11.
    1. du Toit EF, Genis A, Opie LH, Pollesello P, Lochner A. A role for the RISK pathway and K (ATP) channels in pre‐ and post‐conditioning induced by levosimendan in the isolated Guinea pig heart. Br J Pharmacol 2008; 154: 41–50.
    1. Papp JG, Pollesello P, Varró AF, Végh AS. Effect of levosimendan and milrinone on regional myocardial ischemia/reperfusion‐induced arrhythmias in dogs. J Cardiovasc Pharmacol Ther 2006; 11: 129–135.
    1. Hönisch A, Theuring N, Ebner B, Wagner C, Strasser RH, Weinbrenner C. Postconditioning with levosimendan reduces the infarct size involving the PI3K pathway and KATP‐channel activation but is independent of PDE‐III inhibition. Basic Res Cardiol 2010; 105: 155–167.
    1. Bunte S, Behmenburg F, Bongartz A, Stroethoff M, Raupach A, Heinen A, Minol JP, Hollmann MW, Huhn R, Sixt SU. Preconditioning by levosimendan is mediated by activation of mitochondrial Ca(2 )‐sensitive potassium (mBK (Ca)) channels. Cardiovasc Drugs Ther 2018; 32: 427–434.
    1. Stroethoff M, Bunte S, Raupach A, van de Snepscheut M, Torregroza C, Heinen A, Mathes A, Hollmann MW, Huhn R, Sixt SU. Impact of Ca(2 )‐sensitive potassium channels in levosimendan‐induced postconditioning. Cardiovasc Drugs Ther 2019; 33: 581–588.
    1. Pollesello P, Mebazaa A. ATP‐dependent potassium channels as a key target for the treatment of myocardial and vascular dysfunction. Curr Opin Crit Care 2004; 10: 436–441.
    1. Pollesello P, Papp Z. The cardioprotective effects of levosimendan: preclinical and clinical evidence. J Cardiovasc Pharmacol 2007; 50: 257–263.
    1. Cammarata GA, Weil MH, Sun S, Huang L, Fang X, Tang W. Levosimendan improves cardiopulmonary resuscitation and survival by K (ATP) channel activation. J Am Coll Cardiol 2006; 47: 1083–1085.
    1. Tritapepe L, De Santis V, Vitale D, Guarracino F, Pellegrini F, Pietropaoli P, Singer M. Levosimendan pre‐treatment improves outcomes in patients undergoing coronary artery bypass graft surgery. Br J Anaesth 2009; 102: 198–204.
    1. Kivikko M, Nieminen MS, Pollesello P, Pohjanjousi P, Colucci WS, Teerlink JR, Mebazaa A. The clinical effects of levosimendan are not attenuated by sulfonylureas. Scand Cardiovasc J 2012; 46: 330–338.
    1. Patel DJ, Purcell HJ, Fox KM. Cardioprotection by opening of the K (ATP) channel in unstable angina. is this a clinical manifestation of myocardial preconditioning? Results of a randomized study with nicorandil. CESAR 2 investigation. clinical european studies in angina and revascularization. Eur Heart J 1999; 20: 51–57.
    1. Farmakis D, Alvarez J, Gal TB, Brito D, Fedele F, Fonseca C, Gordon AC, Gotsman I, Grossini E, Guarracino F, Harjola VP, Hellman Y, Heunks L, Ivancan V, Karavidas A, Kivikko M, Lomivorotov V, Longrois D, Masip J, Metra M, Morelli A, Nikolaou M, Papp Z, Parkhomenko A, Poelzl G, Pollesello P, Ravn HB, Rex S, Riha H, Ricksten SE, Schwinger RHG, Vrtovec B, Yilmaz MB, Zielinska M, Parissis J. Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol 2016; 222: 303–312.
    1. Nieminen MS, Pollesello P, Vajda G, Papp Z. Effects of levosimendan on the energy balance: preclinical and clinical evidence. J Cardiovasc Pharmacol 2009; 53: 302–310.
    1. Eksert B, Usta C. Role of potassium channels in the relaxant effect of levosimendan in Guinea pig tracheal preparations. Pharmacol Rep 2009; 61: 275–280.
    1. Babik B, Balogh AL, Sudy R, Ivankovitsne‐Kiss O, Fodor GH, Petak F. Levosimendan prevents bronchoconstriction and adverse respiratory tissue mechanical changes in rabbits. Am J Physiol Lung Cell Mol Physiol 2017; 313: L950–L956.
    1. Zhang C, Guo Z, Liu H, Shi Y, Ge S. Influence of levosimendan postconditioning on apoptosis of rat lung cells in a model of ischemia‐reperfusion injury. PLoS One. 2015; 10: e0114963.
    1. Hehir MP, Moynihan AT, Morrison JJ. Relaxant effect of levosimendan on human uterine contractility in vitro. Am J Obstet Gynecol 2010; 203: 184 e187–184 e112.
    1. Gooshe M, Tabaeizadeh M, Aleyasin AR, Mojahedi P, Ghasemi K, Yousefi F, Vafaei A, Amini‐Khoei H, Amiri S, Dehpour AR. Levosimendan exerts anticonvulsant properties against PTZ‐induced seizures in mice through activation of nNOS/NO pathway: role for K (ATP) channel. Life Sci 2017; 168: 38–46.
    1. Pagel PS, Hettrick DA, Warltier DC. Influence of levosimendan, pimobendan, and milrinone on the regional distribution of cardiac output in anaesthetized dogs. Br J Pharmacol 1996; 119: 609–615.
    1. Grossini E, Pollesello P, Bellofatto K, Sigaudo L, Farruggio S, Origlia V, Mombello C, Mary DA, Valente G, Vacca G. Protective effects elicited by levosimendan against liver ischemia/reperfusion injury in anesthetized rats. Liver Transpl 2014; 20: 361–375.
    1. Grossini E, Molinari C, Pollesello P, Bellomo G, Valente G, Mary D, Vacca G, Caimmi P. Levosimendan protection against kidney ischemia/reperfusion injuries in anesthetized pigs. J Pharmacol Exp Ther 2012; 342: 376–388.
    1. Bowman P, Haikala H, Paul RJ. Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 1999; 288: 316–325.
    1. Du Toit EF, Muller CA, McCarthy J, Opie LH. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the langendorff‐perfused Guinea pig heart. J Pharmacol Exp Ther 1999; 290: 505–514.
    1. Segreti JA, Marsh KC, Polakowski JS, Fryer RM. Evoked changes in cardiovascular function in rats by infusion of levosimendan, OR‐1896 [(R)‐N‐(4‐(4‐methyl‐6‐oxo‐1,4,5,6‐tetrahydropyridazin‐3‐yl)phenyl)acetamide], OR‐1855 [(R)‐6‐(4‐aminophenyl)‐5‐methyl‐4,5‐dihydropyridazin‐3(2H)‐one], dobutamine, and milrinone: comparative effects on peripheral resistance, cardiac output, dP/dt, pulse rate, and blood pressure. J Pharmacol Exp Ther 2008; 325: 331–340.
    1. Pagel PS, Hettrick DA, Warltier DC. Comparison of the effects of levosimendan, pimobendan, and milrinone on canine left ventricular‐arterial coupling and mechanical efficiency. Basic Res Cardiol 1996; 91: 296–307.
    1. Schwarte LA, Picker O, Bornstein SR, Fournell A, Scheeren TW. Levosimendan is superior to milrinone and dobutamine in selectively increasing microvascular gastric mucosal oxygenation in dogs. Crit Care Med 2005; 33: 135–142 discussion 246‐137.
    1. Grübler MR, Wigger O, Berger D, Blöchlinger S. Basic concepts of heart‐lung interactions during mechanical ventilation. Swiss Med Wkly 2017; 147: w14491.
    1. Noel‐Morgan J, Muir WW. Anesthesia‐associated relative hypovolemia: mechanisms, monitoring, and treatment considerations. Front Vet Sci. 2018; 5: 53.
    1. Uemura K, Sugimachi M, Kawada T, Kamiya A, Jin Y, Kashihara K, Sunagawa K. A novel framework of circulatory equilibrium. Am J Physiol Heart Circ Physiol 2004; 286: H2376–H2385.
    1. Fudim M, Boortz‐Marx RL, Ganesh A, DeVore AD, Patel CB, Rogers JG, Coburn A, Johnson I, Paul A, Coyne BJ, Rao SV, Gutierrez JA, Kiefer TL, Kong DF, Green CL, Jones WS, Felker GM, Hernandez AF, Patel MR. Splanchnic nerve block for chronic heart failure. JACC Heart Fail. 2020; 8: 742–752.
    1. Levine AR, Simon MA, Gladwin MT. Pulmonary vascular disease in the setting of heart failure with preserved ejection fraction. Trends Cardiovasc Med 2019; 29: 207–217.
    1. Hansen MS, Andersen A, Nielsen‐Kudsk JE. Levosimendan in pulmonary hypertension and right heart failure. Pulm Circ. 2018; 8: 2045894018790905.
    1. Cleland JG, Nikitin N, McGowan J. Levosimendan: first in a new class of inodilator for acute and chronic severe heart failure. Expert Rev Cardiovasc Ther 2004; 2: 9–19.
    1. Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of the haemodynamic action of a 24‐h infusion of levosimendan in patients with congestive heart failure. Eur J Heart Fail 2007; 9: 75–82.
    1. Brener MI, Hamid NB, Sunagawa K, Borlaug BA, Shah SJ, Rich S, Burkhoff D. Changes in stressed blood volume with levosimendan in pulmonary hypertension from heart failure with preserved ejection fraction: insights regarding mechanism of action from the HELP trial. J Card Fail 2021. Jun 15; 27: 1023–1026.
    1. Mondéjar‐Parreño G, Cogolludo A, Perez‐Vizcaino F. Potassium (K(+)) channels in the pulmonary vasculature: implications in pulmonary hypertension physiological, pathophysiological and pharmacological regulation. Pharmacol Ther 2021; 225: 107835.
    1. Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33: 504–523.

Source: PubMed

3
Abonner