PD-1/PD-L1 Inhibitors in Cervical Cancer

Yuncong Liu, Li Wu, Ruizhan Tong, Feiyue Yang, Limei Yin, Mengqian Li, Liting You, Jianxin Xue, You Lu, Yuncong Liu, Li Wu, Ruizhan Tong, Feiyue Yang, Limei Yin, Mengqian Li, Liting You, Jianxin Xue, You Lu

Abstract

Cervical cancer is one of the most common gynecological tumors, and the majority of early-stage cervical cancer patients achieve good recovery through surgical treatment and concurrent chemoradiotherapy (CCRT). However, for patients with recurrent, persistent, metastatic cervical cancer, effective treatment is rare, except for bevacizumab combined with chemotherapy. Programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors might be a novel choice to improve the clinical outcomes of these patients. Thus far, some pivotal trials, including Keynote 028, Keynote 158 and Checkmate 358, have indicated established clinical benefit of PD-1/PD-L1 inhibitors in cervical cancer. In light of these data, the FDA has approved pembrolizumab for patients with recurrent or metastatic cervical cancer with disease progression during or after chemotherapy. There are also some ongoing studies that may provide more evidence for the PD-1/PD-L1 pathway as a therapeutic target in cervical cancer. In this review, we have summarized the status and application of PD-1/PD-L1 inhibitors in clinical trials for the treatment of cervical cancer and suggested some future directions in this field.

Keywords: cervical cancer; human papillomavirus (HPV); immune checkpoint inhibitors; immunotherapy; programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1).

Figures

FIGURE 1
FIGURE 1
The CTLA-4 and PD-1/PD-L1 pathways in cervical cancer.

References

    1. Amatore F., Gorvel L., Olive D. (2018). Inducible co-stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert. Opin. Ther. Targets 22 343–351. 10.1080/14728222.2018.1444753
    1. Bagcchi S. (2014). Pembrolizumab for treatment of refractory melanoma. Lancet Oncol. 15:e419 10.1016/S1470-2045(14)70348-1
    1. Balermpas P., Martin D., Wieland U., Rave-Frank M., Strebhardt K., Rodel C., et al. (2017). Human papilloma virus load and PD-1/PD-L1, CD8(+) and FOXP3 in anal cancer patients treated with chemoradiotherapy: rationale for immunotherapy. Oncoimmunology 6:e1288331. 10.1080/2162402X.2017.1288331
    1. Borcoman E., Le Tourneau C. (2017). Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther. Adv. Med. Oncol. 9 431–439. 10.1177/1758834017708742
    1. Boussios S., Seraj E., Zarkavelis G., Petrakis D., Kollas A., Kafantari A., et al. (2016). Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: where do we stand? A literature review. Crit. Rev. Oncol. Hematol. 108 164–174. 10.1016/j.critrevonc.2016.11.006
    1. Boussiotis V. A. (2016). Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med. 375 1767–1778. 10.1056/NEJMra1514296
    1. Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. (2018). Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68 394–424. 10.3322/caac.21492
    1. Cancer Genome Atlas Research Network, Albert Einstein College of Medicine, Analytical Biological Services, Barretos Cancer Hospital, Baylor College of Medicine, Beckman Research Institute of City of Hope, et al. (2017). Integrated genomic and molecular characterization of cervical cancer. Nature 543 378–384. 10.1038/nature21386
    1. Chen J., Gu W., Yang L., Chen C., Shao R., Xu K., et al. (2015). Nanotechnology in the management of cervical cancer. Rev. Med. Virol. 25(Suppl. 1), 72–83. 10.1002/rmv.1825
    1. Chen Z., Pang N., Du R., Zhu Y., Fan L., Cai D., et al. (2016). Elevated expression of programmed death-1 and programmed death ligand-1 negatively regulates immune response against cervical cancer cells. Med. Inflamm. 2016:6891482. 10.1155/2016/6891482
    1. Compte M., Harwood S. L., Munoz I. G., Navarro R., Zonca M., Perez-Chacon G., et al. (2018). A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat. Commun. 9:4809. 10.1038/s41467-018-07195-w
    1. Constantinidou A., Alifieris C., Trafalis D. T. (2018). Targeting programmed cell death -1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol. Ther. 18 30173–30176. 10.1016/j.pharmthera.2018.09.008
    1. Dijkstra K. K., Voabil P., Schumacher T. N., Voest E. E. (2016). Genomics- and transcriptomics-based patient selection for cancer treatment with immune checkpoint inhibitors: a review. JAMA Oncol. 2 1490–1495. 10.1001/jamaoncol.2016.2214
    1. Enwere E. K., Kornaga E. N., Dean M., Koulis T. A., Phan T., Kalantarian M., et al. (2017). Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod. Pathol. 30 577–586. 10.1038/modpathol.2016.221
    1. Feng Y. C., Ji W. L., Yue N., Huang Y. C., Ma X. M. (2018). The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance. Cancer Manag. Res. 10 105–113. 10.2147/CMAR.S152232
    1. Fife B. T., Bluestone J. A. (2008). Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224 166–182. 10.1111/j.1600-065X.2008.00662.x
    1. Franzen A., Vogt T. J., Muller T., Dietrich J., Schrock A., Golletz C., et al. (2018). PD-L1 (CD274) and PD-L2 (PDCD1LG2) promoter methylation is associated with HPV infection and transcriptional repression in head and neck squamous cell carcinomas. Oncotarget 9 641–650. 10.18632/oncotarget.23080
    1. Frenel J. S., Le Tourneau C., O’neil B., Ott P. A., Piha-Paul S. A., Gomez-Roca C., et al. (2017). Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J. Clin. Oncol. 35 4035–4041. 10.1200/JCO.2017.74.5471
    1. Gettinger S., Horn L., Jackman D., Spigel D., Antonia S., Hellmann M., et al. (2018). Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J. Clin. Oncol. 36 1675–1684. 10.1200/JCO.2017.77.0412
    1. Goodman A. (2015). HPV testing as a screen for cervical cancer. BMJ 350:h2372. 10.1136/bmj.h2372
    1. Gorris M. A. J., Halilovic A., Rabold K. (2018). Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J. Immunol. 200 347–354. 10.4049/jimmunol.1701262
    1. Guitarte C., Alagkiozidis I., Mize B., Stevens E., Salame G., Lee Y. C. (2014). Glassy cell carcinoma of the cervix: a systematic review and meta-analysis. Gynecol. Oncol. 133 186–191. 10.1016/j.ygyno.2014.01.048
    1. Heeren A. M., Punt S., Bleeker M. C., Gaarenstroom K. N., Van Der Velden J., Kenter G. G., et al. (2016). Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod. Pathol. 29 753–763. 10.1038/modpathol.2016.64
    1. Hodi F. S., O’day S. J., Mcdermott D. F., Weber R. W., Sosman J. A., Haanen J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363 711–723. 10.1056/NEJMoa1003466
    1. Hollebecque A., Meyer T., Moore K. N., Machiels J.-P. H., De Greve J., López-Picazo J. M., et al. (2017). An open-label, multicohort, phase I/II study of nivolumab in patients with virus-associated tumors (CheckMate 358): efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. J. Clin. Oncol. 35:5504 10.1200/JCO.2017.35.15_suppl.5504
    1. Hsu P. C., Li S. H., Yang C. T. (2018). Recurrent pneumonitis induced by atezolizumab (anti-programmed death ligand 1) in NSCLC patients who previously experienced anti-programmed death 1 immunotherapy-related pneumonitis. J. Thorac. Oncol. 13 e227–e230. 10.1016/j.jtho.2018.06.022
    1. Julia E. P., Amante A., Pampena M. B., Mordoh J., Levy E. M. (2018). Avelumab, an IgG1 anti-PD-L1 immune checkpoint inhibitor, triggers NK cell-mediated cytotoxicity and cytokine production against triple negative breast cancer cells. Front. Immunol. 9:2140. 10.3389/fimmu.2018.02140
    1. Kurup S. P., Obeng-Adjei N., Anthony S. M., Traore B., Doumbo O. K., Butler N. S., et al. (2017). Regulatory T cells impede acute and long-term immunity to blood-stage malaria through CTLA-4. Nat. Med. 23 1220–1225. 10.1038/nm.4395
    1. Lai Y. L., Chen L. C., Huang C. Y., Chiang S. F., Liang J. A., Chao K. S. C., et al. (2017). PD-L1 as the prognostic immune biomarker for predicting the relapse of locally advanced cervical adenocarcinoma and adenosquamous carcinoma treated with definitive chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 99 E299–E300. 10.1016/j.ijrobp.2017.06.1318
    1. Le Tourneau C., Hoimes C., Zarwan C., Wong D. J., Bauer S., Claus R., et al. (2018). Avelumab in patients with previously treated metastatic adrenocortical carcinoma: phase 1b results from the JAVELIN solid tumor trial. J. Immunother. Cancer 6:111. 10.1186/s40425-018-0424-9
    1. Lheureux S., Butler M. O., Clarke B., Cristea M. C., Martin L. P., Tonkin K., et al. (2018). Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 4:e173776. 10.1001/jamaoncol.2017.3776
    1. Lim M., Xia Y., Bettegowda C., Weller M. (2018). Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15 422–442. 10.1038/s41571-018-0003-5
    1. Liu C., Lu J., Tian H., Du W., Zhao L., Feng J., et al. (2017). Increased expression of PDL1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol. Med. Rep. 15 1063–1070. 10.3892/mmr.2017.6102
    1. Liu Y. L., Zamarin D. (2018). Combination immune checkpoint blockade strategies to maximize immune response in gynecological cancers. Curr. Oncol. Rep. 20:94. 10.1007/s11912-018-0740-8
    1. Lommatzsch M., Bratke K., Stoll P. (2018). Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 379:e14. 10.1056/NEJMc1808251
    1. Long G. V., Tykodi S. S., Schneider J. G., Garbe C., Gravis G., Rashford M., et al. (2018). Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann. Oncol. 29 2208–2213. 10.1093/annonc/mdy408
    1. Meng Y., Liang H., Hu J., Liu S., Hao X., Wong M. S. K., et al. (2018). PD-L1 Expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J. Cancer 9 2938–2945. 10.7150/jca.22532
    1. Mezache L., Paniccia B., Nyinawabera A., Nuovo G. J. (2015). Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod. Pathol. 28 1594–1602. 10.1038/modpathol.2015.108
    1. Minion L. E., Tewari K. S. (2018). Cervical cancer - state of the science: from angiogenesis blockade to checkpoint inhibition. Gynecol. Oncol. 148 609–621. 10.1016/j.ygyno.2018.01.009
    1. Monk B. J., Sill M. W., Mcmeekin D. S., Cohn D. E., Ramondetta L. M., Boardman C. H., et al. (2009). Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a gynecologic oncology group study. J. Clin. Oncol. 27 4649–4655. 10.1200/JCO.2009.21.8909
    1. Papadopoulos K. P., Crittenden M. R., Johnson M. L., Lockhart A. C., Moore K. N., Falchook G. S. (2016). A first-in-human study of REGN2810, a monoclonal, fully human antibody to programmed death-1 (PD-1), in combination with immunomodulators including hypofractionaed radiotherapy (hfRT). J. Clin. Oncol. 34:3024 10.1200/JCO.2016.34.15_suppl.3024
    1. Pardoll D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 252–264. 10.1038/nrc3239
    1. Paz-Ares L., Luft A., Vicente D., Tafreshi A., Gumus M., Mazieres J., et al. (2018). Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379 2040–2051. 10.1056/NEJMoa1810865
    1. Polesso F., Weinberg A., Moran A. E. (2018). Late stage tumor regression after PD-L1 blockade with a concurrent OX40 agonist. Cancer Immunol. Res. 10.1158/2326-6066.CIR-18-0222 [Epub ahead of print].
    1. Qin Y., Ekmekcioglu S., Forget M. A., Szekvolgyi L., Hwu P., Grimm E. A., et al. (2017). Cervical cancer neoantigen landscape and immune activity is associated with human papillomavirus master regulators. Front. Immunol. 8:689. 10.3389/fimmu.2017.00689
    1. Raedler L. A. (2015). Opdivo (Nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma. Am. Health Drug Benefits 8 180–183.
    1. Reddy O. L., Shintaku P. I., Moatamed N. A. (2017). Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn. Pathol. 12:45. 10.1186/s13000-017-0631-6
    1. Sahasrabuddhe V. V., Parham G. P., Mwanahamuntu M. H., Vermund S. H. (2012). Cervical cancer prevention in low- and middle-income countries: feasible, affordable, essential. Cancer Prevent. Res. 5 11–17. 10.1158/1940-6207.CAPR-11-0540
    1. Schellens J. H. M., Marabelle A., Zeigenfuss S., Ding J., Pruitt S. K., Chung H. C. (2017). Pembrolizumab for previously treated advanced cervical squamous cell cancer:preliminary results from the phase 2 KEYNOTE-158 study. J. Clin. Oncol. 35:5514 10.1200/JCO.2017.35.15_suppl.5514
    1. Schumacher T. N., Schreiber R. D. (2015). Neoantigens in cancer immunotherapy. Science 348 69–74. 10.1126/science.aaa4971
    1. Sidaway P. (2018). Cemiplimab effective in cutaneous SCC. Nat. Rev. Clin. Oncol. 15:472. 10.1038/s41571-018-0056-5
    1. Siu L. L., Even C., Mesia R., Remenar E., Daste A., Delord J. P., et al. (2018). Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 10.1001/jamaoncol.2018.4628 [Epub ahead of print].
    1. Tewari K. S., Sill M. W., Long H. J., III, Penson R. T., Huang H., Ramondetta L. M., et al. (2014). Improved survival with bevacizumab in advanced cervical cancer. N. Engl. J. Med. 370 734–743. 10.1056/NEJMoa1309748
    1. Tewari K. S., Sill M. W., Penson R. T., Huang H., Ramondetta L. M., Landrum L. M., et al. (2017). Bevacizumab for advanced cervical cancer: final overall survival and adverse event analysis of a randomised, controlled, open-label, phase 3 trial (gynecologic oncology group 240). Lancet 390 1654–1663. 10.1016/S0140-6736(17)31607-0
    1. Wang J., Chmielowski B., Pellissier J., Xu R., Stevinson K., Liu F. X. (2017). Cost-Effectiveness of pembrolizumab versus ipilimumab in ipilimumab-naive patients with advanced melanoma in the United States. J. Manag. Care Spec. Pharm. 23 184–194. 10.18553/jmcp.2017.23.2.184
    1. Yang W., Lu Y. P., Yang Y. Z., Kang J. R., Jin Y. D., Wang H. W. (2017). Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J. Obstet. Gynaecol. Res. 43 1602–1612. 10.1111/jog.13411
    1. Yang W., Song Y., Lu Y. L., Sun J. Z., Wang H. W. (2013). Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 139 513–522. 10.1111/imm.12101
    1. Zandberg D. P., Algazi A. P., Jimeno A., Good J. S., Fayette J., Bouganim N., et al. (2018). Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with > / = 25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 107 142–152. 10.1016/j.ejca.2018.11.015
    1. Zhang S., Li W. (2018). The effort in exploration of a definitive predictive factor from PD-1/PD-L1 blockade in advanced or metastatic urothelial cancer. J. Clin. Oncol. 36 3056–3057. 10.1200/JCO.2018.79.1400

Source: PubMed

3
Abonner