Threat of shock increases excitability and connectivity of the intraparietal sulcus

Nicholas L Balderston, Elizabeth Hale, Abigail Hsiung, Salvatore Torrisi, Tom Holroyd, Frederick W Carver, Richard Coppola, Monique Ernst, Christian Grillon, Nicholas L Balderston, Elizabeth Hale, Abigail Hsiung, Salvatore Torrisi, Tom Holroyd, Frederick W Carver, Richard Coppola, Monique Ernst, Christian Grillon

Abstract

Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year period, placing a substantial burden on the national health care system. Therefore, there is a critical need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased, multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and connectivity (fMRI) to identify the regions of the brain that contribute most prominently to sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both elevated neural activity and global brain connectivity during threat. The IPS plays a key role in attention orienting and may contribute to the hypervigilance that is a common symptom of pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for the paradoxical facilitation of performance on tasks that require an external focus of attention, and impairment of performance on tasks that require an internal focus of attention.

Trial registration: ClinicalTrials.gov NCT00047853.

Keywords: alpha; anxiety; fMRI; global connectivity; human; magnetoencephalography; neuroscience; startle.

Conflict of interest statement

The authors declare that no competing interests exist.

Figures

Figure 1.. Schematic of experimental paradigm.
Figure 1.. Schematic of experimental paradigm.
(A) Subjects underwent alternating blocks of threat and safety. (B) Visual display present on the screen during the experiment. During the experiment subjects saw two circles. The color of the outer circle indicated the block type. The color of the inner circle was controlled by the subject, and reflected the subject’s then-current anxiety level. DOI:http://dx.doi.org/10.7554/eLife.23608.003
Figure 2.. Behavioral results from both experiments.
Figure 2.. Behavioral results from both experiments.
(A) Anxiety ratings during the MEG study. (B) Startle magnitude during the MEG study. (C) Anxiety ratings during the fMRI study. Bars represent the mean ± within-subject SEM (Cousineau, 2005). (D) Correlations between anxiety potentiated startle (APS) and differential anxiety ratings. The black squares represent the correlation between APS and ratings during the MEG session. The red dots represent the correlation between APS during the MEG study and anxiety ratings during the fMRI study in the subset of subjects who participated in both studies. DOI:http://dx.doi.org/10.7554/eLife.23608.005
Figure 3.. Overview of global brain connectivity…
Figure 3.. Overview of global brain connectivity (GBC) measure.
(A) Map showing average GBC across all safe and threat TRs. (B) Cartoon schematic of a correlation matrix. The 43204 voxel x 43204 voxel cross correlation matrix was calculated separately for each subject and each condition. Correlations were averaged across rows for the entire grey matter mask, to create a single map reflecting the average correlation between each voxel and all other voxels in the mask. (C) Graph representing the mean GBC following the Fisher’s Z transformation for safe and threat averaged across the entire grey matter mask. Bars represent the mean ± within-subject SEM (Cousineau, 2005). DOI:http://dx.doi.org/10.7554/eLife.23608.007
Figure 4.. Results from voxelwise global brain…
Figure 4.. Results from voxelwise global brain connectivity (GBC) analysis.
(A) Statistical map showing results from a threat vs. safe paired-sample t-test. (B) Graph representing average GBC values after applying the Fisher’s Z transformation for clusters shown in panel A. Bars represent the mean ± within-subject SEM (Cousineau, 2005). DOI:http://dx.doi.org/10.7554/eLife.23608.010
Figure 5.. Results from bilateral IPS seed-based…
Figure 5.. Results from bilateral IPS seed-based connectivity analysis.
(A) Statistical map showing results from a threat vs. safe paired-sample t-test. (B) Graph representing average IPS connectivity values for clusters shown in panel A. Bars represent the mean ± within-subject SEM (Cousineau, 2005). DOI:http://dx.doi.org/10.7554/eLife.23608.013
Figure 6.. Overview of MEG analyses.
Figure 6.. Overview of MEG analyses.
(A) Spectrogram representing power averaged across all subjects and all sensors with peak in the alpha frequency band. (B) Graph showing the frequency of peak alpha (individual alpha frequency) averaged across subjects. Bars represent the mean ± SEM. (C) Example of single subject alignment with sensors (black dots) source grid (green dots) and headmodel (surface) plotted together. DOI:http://dx.doi.org/10.7554/eLife.23608.015
Figure 7.. Alpha results from threat vs.…
Figure 7.. Alpha results from threat vs. safe t-test.
(A) Statistical map in sensor space showing a significant reduction in alpha power. Black symbols represent clusters of sensors showing significant threat vs. safe differences. (B) Graph showing average alpha power for safe and threat conditions in the largest cluster of sensors in panel A. (C) Statistical map in source space showing a significant reduction in alpha power. (D) Graph showing average alpha power for safe and threat conditions in the cluster in panel C. Bars represent the mean ± within-subject SEM (Cousineau, 2005). DOI:http://dx.doi.org/10.7554/eLife.23608.017
Figure 8.. Conjunction map from voxelwise fMRI…
Figure 8.. Conjunction map from voxelwise fMRI GBC analysis and MEG alpha power differences.
Colors represent significant safe vs. threat differences from the fMRI analysis (yellow), MEG analysis (blue), and both analyses (green). DOI:http://dx.doi.org/10.7554/eLife.23608.019
Author response image 1.
Author response image 1.
DOI:http://dx.doi.org/10.7554/eLife.23608.022
Author response image 2.
Author response image 2.
DOI:http://dx.doi.org/10.7554/eLife.23608.023
Author response image 3.
Author response image 3.
DOI:http://dx.doi.org/10.7554/eLife.23608.024
Author response image 4.. Α connectivity across…
Author response image 4.. Α connectivity across AAL regions during 2 second baseline prior to startle probe.
A) Mean α connectivity across AAL regions during safe periods. B) Mean α connectivity across AAL regions during threat periods. C) Unthresholded T-test results comparing α connectivity during safe and threat conditions. Thresholded T-test results comparing α connectivity during safe and threat conditions. Labels on Y-axis correspond to regions of the AAL axis. Labels on the X-axis correspond to groups from AAL atlas (frontal, limbic, occipital, parietal, subcortical, temporal, cerebellum). Boxes in A and B represent α connectivity in the occipital cortices. DOI:http://dx.doi.org/10.7554/eLife.23608.025
Author response image 5.. Β connectivity across…
Author response image 5.. Β connectivity across AAL regions during 2 second baseline prior to startle probe.
A) Mean β connectivity across AAL regions during safe periods. B) Mean β connectivity across AAL regions during threat periods. C) Unthresholded T-test results comparing β connectivity during safe and threat conditions. Thresholded T-test results comparing β connectivity during safe and threat conditions. Labels on Y-axis correspond to regions of the AAL axis. Labels on the X-axis correspond to groups from AAL atlas (frontal, limbic, occipital, parietal, subcortical, temporal, cerebellum). DOI:http://dx.doi.org/10.7554/eLife.23608.026
Author response image 6.. Adjacency matrices constructed…
Author response image 6.. Adjacency matrices constructed from downsampled timeseries for the α and β bands.
DOI:http://dx.doi.org/10.7554/eLife.23608.027
Author response image 7.. Adjacency matrices constructed…
Author response image 7.. Adjacency matrices constructed from non-downsampled timeseries for the α and β bands.
DOI:http://dx.doi.org/10.7554/eLife.23608.028
Author response image 8.. Adjacency matrices constructed…
Author response image 8.. Adjacency matrices constructed from downsampled timeseries that have been converted to z-scores for the α and β bands.
DOI:http://dx.doi.org/10.7554/eLife.23608.029
Author response image 9.. Adjacency matrices constructed…
Author response image 9.. Adjacency matrices constructed from non-downsampled timeseries that have been converted to z-scores for the α and β bands.
DOI:http://dx.doi.org/10.7554/eLife.23608.030

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders: Dsm-5. Amer Psychiatric Pub Incorporated; 2013.
    1. Amir N, Taylor CT, Bomyea JA, Badour CL. Temporal allocation of attention toward threat in individuals with posttraumatic stress symptoms. Journal of Anxiety Disorders. 2009;23:1080–1085. doi: 10.1016/j.janxdis.2009.07.010.
    1. Baas JM, Milstein J, Donlevy M, Grillon C. Brainstem correlates of defensive states in humans. Biological Psychiatry. 2006;59:588–593. doi: 10.1016/j.biopsych.2005.09.009.
    1. Bailey DJ, Kim JJ, Sun W, Thompson RF, Helmstetter FJ. Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behavioral Neuroscience. 1999;113:276–282. doi: 10.1037/0735-7044.113.2.276.
    1. Balderston NL, Helmstetter FJ. Conditioning with masked stimuli affects the timecourse of skin conductance responses. Behavioral Neuroscience. 2010;124:478–489. doi: 10.1037/a0019927.
    1. Balderston NL, Mathur A, Adu-Brimpong J, Hale EA, Ernst M, Grillon C. Effect of anxiety on behavioural pattern separation in humans. Cognition & Emotion. 2017b;31:1–11. doi: 10.1080/02699931.2015.1096235.
    1. Balderston NL, Quispe-Escudero D, Hale E, Davis A, O'Connell K, Ernst M, Grillon C. Working memory maintenance is sufficient to reduce state anxiety. Psychophysiology. 2016;53:1660–1668. doi: 10.1111/psyp.12726.
    1. Balderston NL, Schultz DH, Baillet S, Helmstetter FJ. Rapid amygdala responses during trace fear conditioning without awareness. PLoS One. 2014;9:e96803. doi: 10.1371/journal.pone.0096803.
    1. Balderston NL, Schultz DH, Helmstetter FJ. The effect of threat on novelty evoked amygdala responses. PLoS One. 2013;8:e63220. doi: 10.1371/journal.pone.0063220.
    1. Balderston NL, Schultz DH, Hopkins L, Helmstetter FJ. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI. Social Cognitive and Affective Neuroscience. 2015;10:1615–1622. doi: 10.1093/scan/nsv055.
    1. Balderston NL, Vytal KE, O'Connell K, Torrisi S, Letkiewicz A, Ernst M, Grillon C. Anxiety patients show reduced working memory related dlPFC activation during safety and threat. Depression and Anxiety. 2017a;34:1–12. doi: 10.1002/da.22518.
    1. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology. 1988;56:893–897. doi: 10.1037/0022-006X.56.6.893.
    1. Beck AT, Steer RA. BDI, Beck Depression Inventory: Manual. San Antonio: Psychological Corporation; 1987.
    1. Birn RM, Shackman AJ, Oler JA, Williams LE, McFarlin DR, Rogers GM, Shelton SE, Alexander AL, Pine DS, Slattery MJ, Davidson RJ, Fox AS, Kalin NH. Evolutionarily conserved prefrontal-amygdalar dysfunction in early-life anxiety. Molecular Psychiatry. 2014;19:915–922. doi: 10.1038/mp.2014.46.
    1. Blumenthal TD, Cuthbert BN, Filion DL, Hackley S, Lipp OV, van Boxtel A. Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology. 2005;42:1–15. doi: 10.1111/j.1469-8986.2005.00271.x.
    1. Bonnefond M, Jensen O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology. 2012;22:1969–1974. doi: 10.1016/j.cub.2012.08.029.
    1. Bonnefond M, Jensen O. The role of gamma and alpha oscillations for blocking out distraction. Communicative & Integrative Biology. 2013;6:e22702. doi: 10.4161/cib.22702.
    1. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. NeuroImage. 2011;56:1082–1104. doi: 10.1016/j.neuroimage.2011.02.054.
    1. Bucci DJ. Posterior parietal cortex: an interface between attention and learning? Neurobiology of Learning and Memory. 2009;91:114–120. doi: 10.1016/j.nlm.2008.07.004.
    1. Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45:S163–S172. doi: 10.1016/j.neuroimage.2008.10.057.
    1. Cha J, Greenberg T, Carlson JM, Dedora DJ, Hajcak G, Mujica-Parodi LR. Circuit-wide structural and functional measures predict ventromedial prefrontal cortex fear generalization: implications for generalized anxiety disorder. Journal of Neuroscience. 2014;34:4043–4053. doi: 10.1523/JNEUROSCI.3372-13.2014.
    1. Chang C, Liu Z, Chen MC, Liu X, Duyn JH. EEG correlates of time-varying BOLD functional connectivity. NeuroImage. 2013;72:227–236. doi: 10.1016/j.neuroimage.2013.01.049.
    1. Chen AC, Feng W, Zhao H, Yin Y, Wang P. EEG default mode network in the human brain: spectral regional field powers. NeuroImage. 2008;41:561–574. doi: 10.1016/j.neuroimage.2007.12.064.
    1. Cheng DT, Knight DC, Smith CN, Helmstetter FJ. Human amygdala activity during the expression of fear responses. Behavioral Neuroscience. 2006;120:1187–1195. doi: 10.1037/0735-7044.120.5.1187.
    1. Cheng DT, Knight DC, Smith CN, Stein EA, Helmstetter FJ. Functional MRI of human amygdala activity during pavlovian fear conditioning: stimulus processing versus response expression. Behavioral Neuroscience. 2003;117:3–10. doi: 10.1037/0735-7044.117.1.3.
    1. Chu C, Handwerker D, Bandettini PA, Ashburner J. Measuring the consistency of global functional Connectivity using Kernel regression methods. Proceedings of the 2011 IEEE International Workshop on Pattern Recognition in NeuroImaging. 2011:41–44. doi: 10.1109/PRNI.2011.11.
    1. Colclough GL, Brookes MJ, Smith SM, Woolrich MW. A symmetric multivariate leakage correction for MEG connectomes. NeuroImage. 2015;117:439–448. doi: 10.1016/j.neuroimage.2015.03.071.
    1. Cole MW, Pathak S, Schneider W. Identifying the brain's most globally connected regions. NeuroImage. 2010;49:3132–3148. doi: 10.1016/j.neuroimage.2009.11.001.
    1. Cole MW, Repovš G, Anticevic A. The frontoparietal control system: a central role in mental health. Neuroscientist. 2014;20:652–664. doi: 10.1177/1073858414525995.
    1. Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience. 2012;32:8988–8999. doi: 10.1523/JNEUROSCI.0536-12.2012.
    1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience. 2002;3:215–229. doi: 10.1038/nrn755.
    1. Cornwell BR, Baas JM, Johnson L, Holroyd T, Carver FW, Lissek S, Grillon C. Neural responses to auditory stimulus deviance under threat of electric shock revealed by spatially-filtered magnetoencephalography. NeuroImage. 2007;37:282–289. doi: 10.1016/j.neuroimage.2007.04.055.
    1. Cornwell BR, Echiverri AM, Covington MF, Grillon C. Modality-Specific attention under Imminent but not remote threat of shock. Psychological Science. 2008;19:615–622. doi: 10.1111/j.1467-9280.2008.02131.x.
    1. Cornwell BR, Mueller SC, Kaplan R, Grillon C, Ernst M. Anxiety, a benefit and detriment to cognition: behavioral and magnetoencephalographic evidence from a mixed-saccade task. Brain and Cognition. 2012;78:257–267. doi: 10.1016/j.bandc.2012.01.002.
    1. Cousineau D. Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson's method. Tutorials in Quantitative Methods for Psychology. 2005;1:42–45. doi: 10.20982/tqmp.01.1.p042.
    1. Cox RW, Reynolds RC, Taylor PA. AFNI and clustering: false Positive Rates Redux. bioRxiv. 2016 doi: 10.1101/065862.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 1996;29:162–173. doi: 10.1006/cbmr.1996.0014.
    1. Davidson RJ. What does the prefrontal cortex "do" in affect: perspectives on frontal EEG asymmetry research. Biological Psychology. 2004;67:219–234. doi: 10.1016/j.biopsycho.2004.03.008.
    1. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35:105–135. doi: 10.1038/npp.2009.109.
    1. de Munck JC, Gonçalves SI, Faes TJ, Kuijer JP, Pouwels PJ, Heethaar RM, Lopes da Silva FH. A study of the brain's resting state based on alpha band power, heart rate and fMRI. NeuroImage. 2008;42:112–121. doi: 10.1016/j.neuroimage.2008.04.244.
    1. Derakshan N, Ansari TL, Hansard M, Shoker L, Eysenck MW. Anxiety, inhibition, efficiency, and effectiveness. Experimental Psychology. 2009;56:48–55. doi: 10.1027/1618-3169.56.1.48.
    1. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–980. doi: 10.1016/j.neuroimage.2006.01.021.
    1. Doufesh H, Ibrahim F, Ismail NA, Wan Ahmad WA. Effect of muslim prayer (Salat) on α electroencephalography and its relationship with autonomic nervous system activity. The Journal of Alternative and Complementary Medicine. 2014;20:558–562. doi: 10.1089/acm.2013.0426.
    1. Du X, Chen L, Zhou K. The role of the left posterior parietal lobule in top-down modulation on space-based attention: a transcranial magnetic stimulation study. Human Brain Mapping. 2012;33:2477–2486. doi: 10.1002/hbm.21383.
    1. Eilam D, Izhar R, Mort J. Threat detection: behavioral practices in animals and humans. Neuroscience & Biobehavioral Reviews. 2011;35:999–1006. doi: 10.1016/j.neubiorev.2010.08.002.
    1. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry. 2007;164:1476–1488. doi: 10.1176/appi.ajp.2007.07030504.
    1. Evans JW, Kundu P, Horovitz SG, Bandettini PA. Separating Slow BOLD from non-BOLD baseline drifts using multi-echo fMRI. NeuroImage. 2015;105:189–197. doi: 10.1016/j.neuroimage.2014.10.051.
    1. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7:336–353. doi: 10.1037/1528-3542.7.2.336.
    1. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annual Review of Psychology. 2005;56:207–234. doi: 10.1146/annurev.psych.56.091103.070213.
    1. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV® Axis I Disorders (SCID-I), Clinician Version, Administration Booklet. American Psychiatric Publishing; 2012.
    1. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM. Automatically parcellating the human cerebral cortex. Cerebral Cortex. 2004;14:11–22. doi: 10.1093/cercor/bhg087.
    1. Fullana MA, Harrison BJ, Soriano-Mas C, Vervliet B, Cardoner N, Àvila-Parcet A, Radua J. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Molecular Psychiatry. 2016;21:500–508. doi: 10.1038/mp.2015.88.
    1. Gold AL, Morey RA, McCarthy G. Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biological Psychiatry. 2015;77:1–9. doi: 10.1016/j.biopsych.2014.03.030.
    1. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. Fractionation of social brain circuits in autism spectrum disorders. Brain. 2012;135:2711–2725. doi: 10.1093/brain/aws160.
    1. Grillon C, Ameli R, Woods SW, Merikangas K, Davis M. Fear-potentiated startle in humans: effects of anticipatory anxiety on the acoustic blink reflex. Psychophysiology. 1991;28:588–595. doi: 10.1111/j.1469-8986.1991.tb01999.x.
    1. Grillon C, Ameli R. Effects of threat of shock, shock electrode placement and darkness on startle. International Journal of Psychophysiology. 1998;28:223–231. doi: 10.1016/S0167-8760(97)00072-X.
    1. Grillon C, Avenevoli S, Daurignac E, Merikangas KR. Fear-potentiated startle to threat, and prepulse inhibition among young adult nonsmokers, abstinent smokers, and nonabstinent smokers. Biological Psychiatry. 2007;62:1155–1161. doi: 10.1016/j.biopsych.2006.12.027.
    1. Grillon C, Baas J. A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clinical Neurophysiology. 2003;114:1557–1579. doi: 10.1016/S1388-2457(03)00202-5.
    1. Grillon C, Lissek S, Rabin S, McDowell D, Dvir S, Pine DS. Increased anxiety during anticipation of unpredictable but not predictable aversive stimuli as a psychophysiologic marker of panic disorder. American Journal of Psychiatry. 2008;165:898–904. doi: 10.1176/appi.ajp.2007.07101581.
    1. Grillon C, Merikangas KR, Dierker L, Snidman N, Arriaga RI, Kagan J, Donzella B, Dikel T, Nelson C. Startle potentiation by threat of aversive stimuli and darkness in adolescents: a multi-site study. International Journal of Psychophysiology. 1999;32:63–73. doi: 10.1016/S0167-8760(99)00002-1.
    1. Grillon C, Pine DS, Lissek S, Rabin S, Bonne O, Vythilingam M. Increased anxiety during anticipation of unpredictable aversive stimuli in posttraumatic stress disorder but not in generalized anxiety disorder. Biological Psychiatry. 2009;66:47–53. doi: 10.1016/j.biopsych.2008.12.028.
    1. Grillon C, Robinson OJ, Mathur A, Ernst M. Effect of attention control on sustained attention during induced anxiety. Cognition & Emotion. 2016;30:1–13. doi: 10.1080/02699931.2015.1024614.
    1. Grillon C. Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology. 2008;199:421–437. doi: 10.1007/s00213-007-1019-1.
    1. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: studying neural interactions in the human brain. PNAS. 2001;98:694–699. doi: 10.1073/pnas.98.2.694.
    1. Harmon-Jones E, Gable PA, Peterson CK. The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biological Psychology. 2010;84:451–462. doi: 10.1016/j.biopsycho.2009.08.010.
    1. Händel BF, Haarmeier T, Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience. 2011;23:2494–2502. doi: 10.1162/jocn.2010.21557.
    1. Heitmann CY, Feldker K, Neumeister P, Zepp BM, Peterburs J, Zwitserlood P, Straube T. Abnormal brain activation and connectivity to standardized disorder-related visual scenes in social anxiety disorder. Human Brain Mapping. 2016;37:1559–1572. doi: 10.1002/hbm.23120.
    1. Heller W. Neuropsychological mechanisms of individual differences in emotion, personality, and arousal. Neuropsychology. 1993;7:476–489. doi: 10.1037/0894-4105.7.4.476.
    1. Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ. Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage. 2012;59:3909–3921. doi: 10.1016/j.neuroimage.2011.11.005.
    1. Hong X, To XV, Teh I, Soh JR, Chuang KH. Evaluation of EPI distortion correction methods for Quantitative MRI of the brain at High Magnetic field. Magnetic Resonance Imaging. 2015;33:1098–1105. doi: 10.1016/j.mri.2015.06.010.
    1. Hooker CI, Germine LT, Knight RT, D'Esposito M. Amygdala response to facial expressions reflects emotional learning. Journal of Neuroscience. 2006;26:8915–8922. doi: 10.1523/JNEUROSCI.3048-05.2006.
    1. Horschig JM, Jensen O, van Schouwenburg MR, Cools R, Bonnefond M. Alpha activity reflects individual abilities to adapt to the environment. NeuroImage. 2014;89:235–243. doi: 10.1016/j.neuroimage.2013.12.018.
    1. Hrybouski S, Aghamohammadi-Sereshki A, Madan CR, Shafer AT, Baron CA, Seres P, Beaulieu C, Olsen F, Malykhin NV. Amygdala subnuclei response and connectivity during emotional processing. NeuroImage. 2016;133:98–110. doi: 10.1016/j.neuroimage.2016.02.056.
    1. Hunt BA, Tewarie PK, Mougin OE, Geades N, Jones DK, Singh KD, Morris PG, Gowland PA, Brookes MJ. Relationships between cortical myeloarchitecture and electrophysiological networks. PNAS. 2016;113:13510–13515. doi: 10.1073/pnas.1608587113.
    1. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry. 2010;167:748–751. doi: 10.1176/appi.ajp.2010.09091379.
    1. Insel TR. The NIMH Research domain criteria (RDoC) Project: precision medicine for psychiatry. American Journal of Psychiatry. 2014;171:395–397. doi: 10.1176/appi.ajp.2014.14020138.
    1. Jensen O, Bonnefond M, VanRullen R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences. 2012;16:200–206. doi: 10.1016/j.tics.2012.03.002.
    1. Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology. 2006;95:3844–3851. doi: 10.1152/jn.01234.2005.
    1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey replication. Archives of General Psychiatry. 2005;62:617–627. doi: 10.1001/archpsyc.62.6.617.
    1. Khalsa SS, Rudrauf D, Davidson RJ, Tranel D. The effect of meditation on regulation of internal body states. Frontiers in Psychology. 2015;6:1–15. doi: 10.3389/fpsyg.2015.00924.
    1. Kim DK, Rhee JH, Kang SW. Reorganization of the brain and heart rhythm during autogenic meditation. Frontiers in Integrative Neuroscience. 2014;7:109. doi: 10.3389/fnint.2013.00109.
    1. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex. 2011;21:1–7. doi: 10.1093/cercor/bhq237.
    1. Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. Journal of Neuroscience. 2005;25:4593–4604. doi: 10.1523/JNEUROSCI.0236-05.2005.
    1. Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences. 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007.
    1. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews. 2007;53:63–88. doi: 10.1016/j.brainresrev.2006.06.003.
    1. Kundu P, Inati SJ, Evans JW, Luh WM, Bandettini PA. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage. 2012;60:1759–1770. doi: 10.1016/j.neuroimage.2011.12.028.
    1. Kwapis JL, Jarome TJ, Lonergan ME, Helmstetter FJ. Protein kinase Mzeta maintains fear memory in the amygdala but not in the Hippocampus. Behavioral Neuroscience. 2009;123:844–850. doi: 10.1037/a0016343.
    1. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, Arntsen IE, Saether JG, Hollup S, Holen A, Davanger S, Ellingsen Ø. Increased theta and alpha EEG activity during nondirective meditation. The Journal of Alternative and Complementary Medicine. 2009;15:1187–1192. doi: 10.1089/acm.2009.0113.
    1. Lange J, Oostenveld R, Fries P. Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception. Journal of Neuroscience. 2013;33:3212–3220. doi: 10.1523/JNEUROSCI.3755-12.2013.
    1. Lapointe ML, Blanchette I, Duclos M, Langlois F, Provencher MD, Tremblay S. Attentional Bias, distractibility and short-term memory in anxiety. Anxiety, Stress & Coping. 2013;26:293–313. doi: 10.1080/10615806.2012.687722.
    1. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K. EEG-correlated fMRI of human alpha activity. NeuroImage. 2003;19:1463–1476. doi: 10.1016/S1053-8119(03)00286-6.
    1. Lissek S, Orme K, McDowell DJ, Johnson LL, Luckenbaugh DA, Baas JM, Cornwell BR, Grillon C. Emotion regulation and potentiated startle across affective picture and threat-of-shock paradigms. Biological Psychology. 2007;76:124–133. doi: 10.1016/j.biopsycho.2007.07.002.
    1. Liuzzi L, Gascoyne LE, Tewarie PK, Barratt EL, Boto E, Brookes MJ. Optimising experimental design for MEG resting state functional connectivity measurement. NeuroImage. 2016:1–12. doi: 10.1016/j.neuroimage.2016.11.064.
    1. Manza P, Hau CL, Leung HC. Alpha power gates relevant information during working memory updating. Journal of Neuroscience. 2014;34:5998–6002. doi: 10.1523/JNEUROSCI.4641-13.2014.
    1. Mayhew SD, Ostwald D, Porcaro C, Bagshaw AP. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network. NeuroImage. 2013;76:362–372. doi: 10.1016/j.neuroimage.2013.02.070.
    1. McMenamin BW, Langeslag SJ, Sirbu M, Padmala S, Pessoa L. Network organization unfolds over time during periods of anxious anticipation. Journal of Neuroscience. 2014;34:11261–11273. doi: 10.1523/JNEUROSCI.1579-14.2014.
    1. McMenamin BW, Pessoa L. Discovering networks altered by potential threat ("anxiety") using quadratic discriminant analysis. NeuroImage. 2015;116:1–9. doi: 10.1016/j.neuroimage.2015.05.002.
    1. Mechias ML, Etkin A, Kalisch R. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage. 2010;49:1760–1768. doi: 10.1016/j.neuroimage.2009.09.040.
    1. Meyer L, Obleser J, Friederici AD. Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex. 2013;49:711–721. doi: 10.1016/j.cortex.2012.03.006.
    1. Mo J, Liu Y, Huang H, Ding M. Coupling between visual alpha oscillations and default mode activity. NeuroImage. 2013;68:112–118. doi: 10.1016/j.neuroimage.2012.11.058.
    1. Mobbs D, Yu R, Rowe JB, Eich H, FeldmanHall O, Dalgleish T. Neural activity associated with monitoring the oscillating threat value of a tarantula. PNAS. 2010;107:20582–20586. doi: 10.1073/pnas.1009076107.
    1. Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS. Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. Journal of Magnetic Resonance Imaging. 2004;19:499–507. doi: 10.1002/jmri.20032.
    1. Nitschke JB, Heller W, Palmieri PA, Miller GA. Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology. 1999;36:628–637. doi: 10.1111/1469-8986.3650628.
    1. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience. 2011;2011:1–9. doi: 10.1155/2011/156869.
    1. Parsons RG, Gafford GM, Helmstetter FJ. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. Journal of Neuroscience. 2006;26:12977–12983. doi: 10.1523/JNEUROSCI.4209-06.2006.
    1. Patel N, Vytal K, Pavletic N, Stoodley C, Pine DS, Grillon C, Ernst M. Interaction of threat and verbal working memory in adolescents. Psychophysiology. 2016;53:518–526. doi: 10.1111/psyp.12582.
    1. Pavlov I. Conditioned Reflex: An Investigation of the Physiological Activity of the Cerebral Cortex. Oxford Univ Press; 1927.
    1. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annual Review of Neuroscience. 2012;35:73–89. doi: 10.1146/annurev-neuro-062111-150525.
    1. Peterson RA, Heilbronner RL. The anxiety sensitivity index:. Construct validity and factor analytic structure. Journal of Anxiety Disorders. 1987;1:117–121. doi: 10.1016/0887-6185(87)90002-8.
    1. Posner MI. Imaging attention networks. NeuroImage. 2012;61:450–456. doi: 10.1016/j.neuroimage.2011.12.040.
    1. Prater KE, Hosanagar A, Klumpp H, Angstadt M, Phan KL. Aberrant amygdala-frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depression and Anxiety. 2013;30:234–241. doi: 10.1002/da.22014.
    1. Ptak R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry. 2012;18:502–515. doi: 10.1177/1073858411409051.
    1. Rihs TA, Michel CM, Thut G. A Bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage. 2009;44:190–199. doi: 10.1016/j.neuroimage.2008.08.022.
    1. Robinson OJ, Letkiewicz AM, Overstreet C, Ernst M, Grillon C. The effect of induced anxiety on cognition: threat of shock enhances aversive processing in healthy individuals. Cognitive, Affective, & Behavioral Neuroscience. 2011;11:217–227. doi: 10.3758/s13415-011-0030-5.
    1. Robinson OJ, Overstreet C, Charney DR, Vytal K, Grillon C. Stress increases aversive prediction error signal in the ventral striatum. PNAS. 2013a;110:4129–4133. doi: 10.1073/pnas.1213923110.
    1. Robinson OJ, Vytal K, Cornwell BR, Grillon C. The impact of anxiety upon cognition: perspectives from human threat of shock studies. Frontiers in Human Neuroscience. 2013b;7:203. doi: 10.3389/fnhum.2013.00203.
    1. Rushworth MF, Nixon PD, Renowden S, Wade DT, Passingham RE. The left parietal cortex and motor attention. Neuropsychologia. 1997;35:1261–1273. doi: 10.1016/S0028-3932(97)00050-X.
    1. Saad ZS, Glen DR, Chen G, Beauchamp MS, Desai R, Cox RW. A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage. 2009;44:839–848. doi: 10.1016/j.neuroimage.2008.09.037.
    1. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. Journal of Neuroscience. 2010;30:10243–10250. doi: 10.1523/JNEUROSCI.1004-10.2010.
    1. Satterthwaite TD, Wolf DH, Pinkham AE, Ruparel K, Elliott MA, Valdez JN, Overton E, Seubert J, Gur RE, Gur RC, Loughead J. Opposing amygdala and ventral striatum connectivity during emotion identification. Brain and Cognition. 2011;76:353–363. doi: 10.1016/j.bandc.2011.04.005.
    1. Scheeringa R, Mazaheri A, Bojak I, Norris DG, Kleinschmidt A. Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations. Journal of Neuroscience. 2011;31:3813–3820. doi: 10.1523/JNEUROSCI.4697-10.2011.
    1. Scheeringa R, Petersson KM, Kleinschmidt A, Jensen O, Bastiaansen MC. EEG α power modulation of fMRI resting-state connectivity. Brain Connectivity. 2012;2:254–264. doi: 10.1089/brain.2012.0088.
    1. Schmitz A, Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test) Nature Protocols. 2012;7:527–532. doi: 10.1038/nprot.2012.001.
    1. Schultz DH, Balderston NL, Helmstetter FJ. Resting-state connectivity of the amygdala is altered following pavlovian fear conditioning. Frontiers in Human Neuroscience. 2012;6:1–10. doi: 10.3389/fnhum.2012.00242.
    1. Seghier ML. The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry. 2013;19:43–61. doi: 10.1177/1073858412440596.
    1. Shackman AJ, Sarinopoulos I, Maxwell JS, Pizzagalli DA, Lavric A, Davidson RJ. Anxiety selectively disrupts visuospatial working memory. Emotion. 2006;6:40–61. doi: 10.1037/1528-3542.6.1.40.
    1. Simmons A, Strigo I, Matthews SC, Paulus MP, Stein MB. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biological Psychiatry. 2006;60:402–409. doi: 10.1016/j.biopsych.2006.04.038.
    1. Spielberger CD. State-trait anxiety inventory. Anxiety. 1987;19:2009
    1. Strauß A, Wöstmann M, Obleser J. Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience. 2014;8:350. doi: 10.3389/fnhum.2014.00350.
    1. Tabbert K, Merz CJ, Klucken T, Schweckendiek J, Vaitl D, Wolf OT, Stark R. Cortisol enhances neural differentiation during fear acquisition and extinction in contingency aware young women. Neurobiology of Learning and Memory. 2010;94:392–401. doi: 10.1016/j.nlm.2010.08.006.
    1. Torrisi S, O'Connell K, Davis A, Reynolds R, Balderston N, Fudge JL, Grillon C, Ernst M. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Human Brain Mapping. 2015;36:4076–4088. doi: 10.1002/hbm.22899.
    1. Torrisi S, Robinson O, O'Connell K, Davis A, Balderston N, Ernst M, Grillon C. The neural basis of improved cognitive performance by threat of shock. Social Cognitive and Affective Neuroscience. 2016;11:1677–1686. doi: 10.1093/scan/nsw088.
    1. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering. 1997;44:867–880. doi: 10.1109/10.623056.
    1. Vrba J, Robinson SE. Signal processing in magnetoencephalography. Methods. 2001;25:249–271. doi: 10.1006/meth.2001.1238.
    1. Vytal K, Cornwell B, Arkin N, Grillon C. Describing the interplay between anxiety and cognition: from impaired performance under low cognitive load to reduced anxiety under high load. Psychophysiology. 2012;49:842–852. doi: 10.1111/j.1469-8986.2012.01358.x.
    1. Vytal KE, Arkin NE, Overstreet C, Lieberman L, Grillon C. Induced-anxiety differentially disrupts working memory in generalized anxiety disorder. BMC Psychiatry. 2016;16:62. doi: 10.1186/s12888-016-0748-2.
    1. Vytal KE, Cornwell BR, Letkiewicz AM, Arkin NE, Grillon C. The complex interaction between anxiety and cognition: insight from spatial and verbal working memory. Frontiers in Human Neuroscience. 2013;7:93. doi: 10.3389/fnhum.2013.00093.
    1. Vytal K, Overstreet C, Charney D, Robinson O, Grillon C. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults. Journal of Psychiatry & Neuroscience. 2014;39:321–329. doi: 10.1503/jpn.130145.
    1. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli. NeuroImage. 2015;113:153–163. doi: 10.1016/j.neuroimage.2015.03.028.
    1. Waters AM, Bradley BP, Mogg K. Biased attention to threat in paediatric anxiety disorders (generalized anxiety disorder, social phobia, specific phobia, separation anxiety disorder) as a function of 'distress' versus 'fear' diagnostic categorization. Psychological Medicine. 2014;44:607–616. doi: 10.1017/S0033291713000779.
    1. Wu L, Eichele T, Calhoun VD. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. NeuroImage. 2010;52:1252–1260. doi: 10.1016/j.neuroimage.2010.05.053.

Source: PubMed

3
Abonner