Somatosensory Cortex Repetitive Transcranial Magnetic Stimulation and Associative Sensory Stimulation of Peripheral Nerves Could Assist Motor and Sensory Recovery After Stroke

Aristela de Freitas Zanona, Andressa Claudia Romeiro da Silva, Adriana Baltar do Rego Maciel, Livia Shirahige Gomes do Nascimento, Amanda Bezerra da Silva, Nadia Bolognini, Katia Monte-Silva, Aristela de Freitas Zanona, Andressa Claudia Romeiro da Silva, Adriana Baltar do Rego Maciel, Livia Shirahige Gomes do Nascimento, Amanda Bezerra da Silva, Nadia Bolognini, Katia Monte-Silva

Abstract

Background: We investigated whether transcranial magnetic stimulation (rTMS) over the primary somatosensory cortex (S1) and sensory stimulation (SS) could promote upper limb recovery in participants with subacute stroke.

Methods: Participants were randomized into four groups: rTMS/Sham SS, Sham rTMS/SS, rTMS/SS, and control group (Sham rTMS/Sham SS). Participants underwent ten sessions of sham or active rTMS over S1 (10 Hz, 1,500 pulses, 120% of resting motor threshold, 20 min), followed by sham or active SS. The SS involved active sensory training (exploring features of objects and graphesthesia, proprioception exercises), mirror therapy, and Transcutaneous electrical nerve stimulation (TENS) in the region of the median nerve in the wrist (stimulation intensity as the minimum intensity at which the participants reported paresthesia; five electrical pulses of 1 ms duration each at 10 Hz were delivered every second over 45 min). Sham stimulations occurred as follows: Sham rTMS, coil was held while disconnected from the stimulator, and rTMS noise was presented with computer loudspeakers with recorded sound from a real stimulation. The Sham SS received therapy in the unaffected upper limb, did not use the mirror and received TENS stimulation for only 60 seconds. The primary outcome was the Body Structure/Function: Fugl-Meyer Assessment (FMA) and Nottingham Sensory Assessment (NSA); the secondary outcome was the Activity/Participation domains, assessed with Box and Block Test, Motor Activity Log scale, Jebsen-Taylor Test, and Functional Independence Measure.

Results: Forty participants with stroke ischemic (n = 38) and hemorrhagic (n = 2), men (n = 19) and women (n = 21), in the subacute stage (10.6 ± 6 weeks) had a mean age of 62.2 ± 9.6 years, were equally divided into four groups (10 participants in each group). Significant somatosensory improvements were found in participants receiving active rTMS and active SS, compared with those in the control group (sham rTMS with sham SS). Motor function improved only in participants who received active rTMS, with greater effects when active rTMS was combined with active SS.

Conclusion: The combined use of SS with rTMS over S1 represents a more effective therapy for increasing sensory and motor recovery, as well as functional independence, in participants with subacute stroke.

Clinical trial registration: [clinicaltrials.gov], identifier [NCT03329807].

Keywords: neurological rehabilitation; occupational therapy; physical therapists; rTMS; somatosensory cortex; stroke.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 de Freitas Zanona, Romeiro da Silva, do Rego Maciel, Gomes do Nascimento, Bezerra da Silva, Bolognini and Monte-Silva.

Figures

FIGURE 1
FIGURE 1
CONSORT flowchart of the study. BBT, Box and Block test; FIM, Functional Independence Measure; FMA-Motor, upper limb Fugl-Meyer for motor function; FMA-Sensory, upper limb Fugl-Meyer assessment for sensory function; JTT, Jebsen-Taylor Hand Function Test; MAL, Motor Activity Long test;. NSA, Nottingham Sensory Assessment; SS, Sensory Stimulation. rTMS, repetitive Transcranial Magnetic Stimulation.
FIGURE 2
FIGURE 2
Demonstration of the therapeutic environment of repetitive transcranial magnetic stimulation (rTMS) and sensory stimulation. M1, primary motor cortex; S1, primary somatosensory córtex. Participants who were part of the active rTMS/SS group received 20 min of rTMS over S1 followed by the active sensory training: the participant has to haptically explore different textures of familiar objects and to recognize their different characteristics. First with both hands (intramodal calibration) and eyes open (cross-modal calibration) then using only the affected hand and eyes closed (Carey et al., 2011). Firstly, we required to explore the object with eyes closed and both hands, then with only the affected hand and eyes closed. The final part of the training consisted in Mirror Therapy in addition to transcutaneous electrical nerve stimulation (TENS). (A) rTMS on S1, 20 min. (B) Active sensory training, 20–25 min. (C) Mirror therapy/TENS, 40–45 min.
FIGURE 3
FIGURE 3
Proportion of subjects who reached the minimal clinically important difference (MCID) for each group. *p-value < 0.05 Chi square. BBT, Box and Block Test; FMA-Sensory, upper limb Fugl-Meyer assessment for sensory function; FMA-Motor, upper limb Fugl-Meyer assessment for motor function; FIM, Functional Independence Measure; MAL, Motor Activity Log; QOM, the quality of upper limb movement of Motor Activity Long test; MAL-AOM, amount of upper limb movement of Motor Activity Long test. SS, sensory stimulation; rTMS, repetitive transcranial magnetic stimulation.

References

    1. Armutlu K., Meriç A., Kirdi N., Yakut E., Karabudak R. (2003). The effect of transcutaneous electrical nerve stimulation on spasticity in multiple sclerosis patients: a pilot study. Neurorehab. Neural. Repair 17 79–82. 10.1177/0888439003017002001
    1. Beninato M., Gill-Body K. M., Salles S., Stark P. C., Black-Schaffer R. M., Stein J. (2006). Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 87 32–39. 10.1016/j.apmr.2005.08.130
    1. Benjamin E. J., Virani S. S., Callaway C. W., Chamberlain A. M., Chang A. R., et al. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137 67–492. 10.1161/CIR.0000000000000558
    1. Bernhardt J., Hayward K., Kwakkel G., Ward N. S., Wolf S. L., Borschmann K., et al. (2017). Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Inter. J. Stroke 12 444–450. 10.1177/1747493017711816
    1. Bolognini N., Russo C., Vallar G. (2015). Crossmodal illusions in neurorehabilitation. Front. Behav. Neurosci. 10:212. 10.3389/fnbeh.2015.00212
    1. Bolognini N., Convento S., Rossetti A., Merabet L. B. (2013). Multisensory processing after a brain damage: clues on post-injury crossmodal plasticity from neuropsychology. Neurosc. Biobehavioral. Rev. 37 269–278. 10.1016/j.neubiorev.2012.12.006
    1. Bolognini N., Pascual-Leone A., Fregni F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 17:8. 10.1186/1743-0003-6-8
    1. Bolognini N., Russo C., Edwards D. J. (2016). The sensory side of post-stroke motor rehabilitation. Restor. Neurol. Neurosci. 34 571–586. 10.3233/RNN-150606
    1. Borich M. R., Brodie S. M., Grayet W. A., Ionta S., Boyd L. A. (2015). Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia 79 246–255. 10.1016/j.neuropsychologia.2015.07.007
    1. Boros K., Poreisz C., Münchau A., Paulus W., Nitsche M. A. (2008). Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur. J. Neurosci. 27 292–300. 10.1111/j.1460-9568.2008.06090.x
    1. Brodie S. M., Meehan S., Borich M. R., Boyd L. A. (2014). 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke. Front. Hum. Neurosci. 8:143. 10.3389/fnhum.2014.00143
    1. Cambier D. C., De Corte E., Danneels L. A., Witvrouw E. E. (2003). Treating sensory impairments in the post-stroke upper limb with intermittent pneumatic compression. Results of a preliminary trial. Clin. Rehab. 17 14–20. 10.1191/0269215503cr580oa
    1. Carey L., Macdonell R., Matyas T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehab. Neural. Repair. 25 304–313. 10.1177/1545968310397705
    1. Carlsson H., Gard G., Brogårdh C. (2018). Upper-limb sensory impairments after stroke: self-reported experiences of daily life and rehabilitation. J. Rehabil. Med. 50 45–51. 10.2340/16501977-2282
    1. Celnik P., Paik N. J., Vandermeeren Y., Dimyan M., Cohen L. G. (2009). Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke 40 1764–1771. 10.1161/STROKEAHA.108.540500
    1. Chen H. M., Chen C. C., Hsueh I.-P., Huang S.-L., Hsieh C.-L. (2009). Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil. Neural. Repair. 23 435–440. 10.1177/1545968308331146
    1. Chen R., Classen J., Gerloff C., Celnik P., Wassermann E. M., Hallett M., et al. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48 1398–1403. 10.1212/wnl.48.5.1398
    1. Cho H.-S., Cha H. (2015). Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients. J. Phys. Ther. Scie. 27 1045–1047. 10.1589/jpts.27.1045
    1. Conforto A. B., Ferreiro K. N., Tomasi C., Santos R. L., Moreira V. L., Marie S. K. N., et al. (2010). Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehab. Neural. Repair. 24 263–272. 10.1177/1545968309349946
    1. Connell L., Lincoln N. B., Radford K. A. (2008). Somatosensory impairment after stroke: frequency of different deficits and their recovery. Clin. Rehab. 22 758–767. 10.1177/0269215508090674
    1. DeSantana J. M., Walsh D. M., Vance C., Rakel B. A., Sluka K. A. (2008). Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr. Rheumatol. Rep. 10 492–499. 10.1007/s11926-008-0080-z
    1. Dionísio A., Duarte I. C., Patrício M., Castelo-Branco M. (2018). The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. J. Stroke Cerebrovasc. Dis. 27 1–31. 10.1016/j.jstrokecerebrovasdis.2017.09.008
    1. Donoghue J. P., Parham C. (1983). Afferent connections of the lateral agranular field of the rat motor cortex. J. Comp. Neurol. 10 390–404. 10.1002/cne.902170404
    1. Donoghue J. P., Hess G., Sanes J. (1996). Substrates and mechanisms for learning in motor cortex. Acquisition and Mechanisms for Learning in Motor Cortex. Cambridge: MIT Press. 363–386.
    1. Doucet B. M., Lamb A., Griffin L. (2012). Neuromuscular electrical stimulation for skeletal muscle function. YALE J. Biol. Med. 85 201–215.
    1. Du J., Tian L., Liu W., Hu J., Xu G., Ma M., et al. (2016). Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Euro. J. Neurol. 23 1666–1672. 10.1111/ene.13105
    1. Eickhoff S. B., Grefkes C., Fink G. R., Zilles K. (2008). Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. Cereb. Cortex. 18 2820–2830. 10.1093/cercor/bhn039
    1. Enders L. R., Hur P., Johnson M. J., Seo N. J. (2013). Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance. J. Neuroeng. Rehabil. 10:105. 10.1186/1743-0003-10-105
    1. Feigin V. L., Forouzanfar M. H., Krishnamurthi R., Mensah G. A., Connor M., Bennett D. A., et al. (2014). Global and regional burden of stroke during 1990- 2010: findings from the global burden of disease study 2010. Lancet 383 245–255. 10.1016/s0140-6736(13)61953-4
    1. Ferreiro K. N., Santos R. L., Conforto A. B. (2010). Psychometric properties of the portuguese version of the Jebsen-Taylor test for adults with mild hemiparesis. Rev. Bras. Fisioter. 14 377–382. 10.1590/s1413-35552010005000018
    1. Fiorio M., Haggard P. (2005). Viewing the body prepares the brain for touch: effects of TMS over somatosensory cortex. Eur. J. Neurosci. 22 773–777. 10.1111/j.1460-9568.2005.04267.x
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Fugl-Meyer A. R., Jääskö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7 13–31.
    1. Galvão S. C., Santos R. B. C., Santos P. B., Cabral M. E., Monte-Silva K. (2014). Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial. Arch. Phys. Med. Rehab. 95 222–229. 10.1016/j.apmr.2013.10.023
    1. Garry M. I., Loftus A., Summers J. J. (2005). Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp. Brain Res. 163 118–122. 10.1007/s00221-005-2226-9
    1. Gladstone D. J., Danells C. J., Black S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil. Neural. Repair. 16 232–240. 10.1177/154596802401105171
    1. Grant V. M., Gibson A., Shields N. (2017). Somatosensory stimulation to improve hand and upper limb function after stroke—a systematic review with meta-analyses. Topics Stroke Rehab. 25 1–11. 10.1080/10749357.2017.1389054
    1. Hakon A. J., Quattromania M. J., Sjolund C., Tomasevic G., Carey L., Lee J.-M., et al. (2018). Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke. NeuroImage Clin. 17 717–730. 10.1016/j.nicl.2017.11.022
    1. Hasselmo M. E. (1995). Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67 1–27. 10.1016/0166-4328(94)00113-t
    1. Hatem S. M., Saussez G., Faille M. D., Prist V., Zhang X., Dispa D., et al. (2016). Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 10:422. 10.3389/fnhum.2016.00442
    1. Hess G., Donoghue J. P. (1996). Long-term potentiation and long-term depression of horizontal connections in rat motor cortex. Acta Neurobiol. Exp. 56 397–405.
    1. Hoffman R. E., Cavus I. (2002). Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am. J. Psychiatry 159 1093–1102. 10.1176/appi.ajp.159.7.1093
    1. Hosomi K., Morris S., Sakamoto T., Taguchi J., Maruo T., Kageyama Y., et al. (2016). Daily repetitive transcranial magnetic stimulation for poststroke upper limb paresis in the subacute period. J. Stroke Cerebrovas. Dis. 25 1655–1664. 10.1016/j.jstrokecerebrovasdis.2016.02.024
    1. Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45 201–206. 10.1016/j.neuron.2004.12.033
    1. Johansson B. B. (2012). Multisensory stimulation in stroke rehabilitation. Front. Hum. Neurosci. 9:60. 10.3389/fnhum.2012.00060
    1. Kampe K. K., Jones R. A., Auer D. P. (2000). Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum. Brain Mapp. 9 106–114. 10.1002/(sici)1097-0193(200002)9:2<106::aid-hbm5>;2-y
    1. Kessner S. S., Bingel U., Thomalla G. (2016). Somatosensory deficits after stroke: a scoping review. Topics Stroke Rehab. 23 136–146. 10.1080/10749357.2015.1116822
    1. Kilgard M. P., Rennaker R. L., Alexander J., Dawson J. (2018). Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation 42 159–165. 10.3233/NRE-172273
    1. Kim Y. H., You S. H., Ko M.-H., Park J.-W., Lee K. H., Jang S. H., et al. (2006). Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37 1471–1476. 10.1161/01.STR.0000221233.55497.51
    1. Klingner C. M., Ebenau K., Hasler C., Brodoehl S., Görlich Y., Witte O. W. (2011). Influences of negative BOLD responses on positive BOLD responses. Neuroimage 55 1709–1715. 10.1016/j.neuroimage.2011.01.028
    1. Koch G., Franca M., Caltagirone U. V. A. C., Rothwell J. C. (2006). Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. Exp. Brain Res. 172 416–424. 10.1007/s00221-006-0359-0
    1. Kontson K., Marcus I., Myklebust B., Civillico E. (2017). Targeted box and blocks test: normative data and comparison to standard tests. PLoS One 12:1–15. 10.1371/journal.pone.0177965
    1. Lang C. E., Edwards D. F., Birkenmeier R. L., Dromerick A. W. (2008). Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch. Phys. Med. Rehabil. 89 1693–1700. 10.1016/j.apmr.2008.02.022
    1. Laufer Y., Elboim-Gabyzon M. (2011). Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehab. Neural. Repair 25 799–809. 10.1177/1545968310397205
    1. Lefaucheur J. P. P., André-Obadia N., Antal A., Ayache S. S., Baeken C., Benninger D., et al. (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125 2150–2206. 10.1016/j.clinph.2014.05.021
    1. Leodori G., Formica A., Zhu X., Conte A., Belvisi D., Cruccu G., et al. (2017). The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex. J. Neurophysiol. 118 2311–2317. 10.1152/jn.00947.2016
    1. Lima D. H. F., Queiroz A. P., Salvo G., Simone M., YoneyamaTelma D., ObergNúbia M. F. V., et al. (2010). Versão brasileira da Avaliação Sensorial de Nottingham: validade, concordância e confiabilidade. Rev. Bras. Fisioter. 14 166–174. 10.1590/S1413-35552010005000006
    1. Maki T., Quagliato E. M. A. B., Cacho E. W. A. (2006). Estudo de confiabilidade da aplicação da escala de Fugl-Meyer no brasil. Rev. Bras. Fisioter. 10 177–183. 10.1590/s1413-35552006000200007
    1. Meehan S. K., Dao E., Linsdell M. A., Boyd L. A. (2011). Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke. Neurosc. Lett. 500 26–30. 10.1016/j.neulet.2011.05.237
    1. Milot M.-H., Palimeris S., Corriveau H., Tremblay F., Boudrias M.-H. (2019). Effects of a tailored strength training program of the upper limb combined with transcranial direct current stimulation (tDCS) in chronic stroke patients: study protocol for a randomised, double-blind, controlled trial. BMC Sports Sci. Med. Rehab. 11:8. 10.1186/s13102-019-0120-1
    1. Nakagawa S., Cuthill I. C. (2007). Effect size, confidence interval and statistical significance: a paractical guide for biologists. Biol. Ver. 82 591–605. 10.1111/j.1469-185X.2007.00027.x
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 1 206–223. 10.1016/j.brs.2008.06.004
    1. Nowak D. A., Grefkes C., Ameli M., Fink G. R. (2009). Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil. Neural. Repair. 23 641–656. 10.1177/1545968309336661
    1. Pascual-Leone A., Amedi A., Fregni F., Merabet L. B. (2005). The plastic human brain cortex. Annu. Rev. Neurosci. 28 377–401. 10.1146/annurev.neuro.27.070203.144216
    1. Pascual-Leone A., Valls-Sole J., Wassermann E. M., Hallett M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117 847–858. 10.1093/brain/117.4.847
    1. Pereira N. D., Ovando A. C., Michaelsen S. M., Anjos S. M., Lima R. C. M., Nascimento L. R., et al. (2012). Motor Activity Log-Brazil: reliability and relationships with motor impairments in individuals with chronic stroke. Arq. Neuro-Psiquiatr. 70 196–201. 10.1590/s0004-282x2012000300008
    1. Pleger B., Ragert P., Förster A. F. (2004). rTMS elicits tactile discrimination improvement and parallel plastic reorganization in human SI. Akt Neurol. 31:151.
    1. Pollock A., Farmer S. E., Brady M. C., Langhorne P., Mead G. E., Mehrholz J., et al. (2014). Interventions for improving upper limb function after stroke. Cochrane. Database Syst. Rev. 11:2. 10.1002/14651858.CD010820.pub2
    1. Ragert P., Becker M., Tegenthoff M., Pleger B., Dinse H. R. (2004). Sustained increase of somatosensory córtex excitability by 5Hz repetitive transcranial magnetic stimulation studied by paired median nerve stimulation in humans. Neurosci. Lett. 356 91–94. 10.1016/j.neulet.2003.11.034
    1. Riberto M., Miyazaki M. H., Jucá S. S. H., Hatsue Sakamoto, Pinto P. P. N., Battistella L. R. (2004). Validação da Versão brasileira da medida de independência funcional. Acta Fisiat. 11 72–76. 10.5935/0104-7795.20040003
    1. Ridding M. C., Brouwer B., Miles T. S., Pitcher J. B., Thompson P. D. (2000). Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human participants. Exp. Brain Res. 131 135–143. 10.1007/s002219900269
    1. Rocha S. H. S., Silva E., Foerster A., Wiesiolek C., Chagas A. P., Machado G., et al. (2015). The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disabil. Rehab. 10 1–8. 10.3109/09638288.2015.1055382
    1. Rose D. K., Patten C., McGuirk T. E., Lu Xiaomin, Triggs W. J. (2014). Does inhibitory repetitive transcranial magnetic stimulation augment functional task practice to improve arm recovery in chronic stroke? Stroke Res. Treat. 2014 305–336. 10.1155/2014/305236
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. Safety of Tms Consensus Group. (2009). Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120 2008–2039.
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. Safety of Tms Consensus Group. (2012). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120 323–330. 10.1016/j.clinph.2009.08.016
    1. Sathian K., Ramachandran V. S. (2020). Multisensory Perception. Laboratory to Clinic. 1st Edition. Amsterdam: Elsevier.
    1. Schabrun S. M., Hillier S. (2009). Evidence for the retraining of sensation after stroke: a systematic review. Clin. Rehabil. 23 27–39. 10.1177/0269215508098897
    1. Schwarz A., Averta G., Veerbeek J. M., Luft A. R., Held J. P. O., Valenza G., et al. (2019). A functional analysis-based approach to quantify upper limb impairment level in chronic stroke patients: a pilot study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2019 4198–4204. 10.1109/EMBC.2019.8857732
    1. Serrada I., Hordacre B., Hillier S. L. (2019). Does sensory retraining improve sensation and sensorimotor function following stroke: a systematic review and meta-analysis. Front. Neurosci. 30:402. 10.3389/fnins.2019.00402
    1. Stinear C. M., Byblow W. D. (2014). Predicting and accelerating motor recovery after stroke. Curr. Opin. Neurol. 27 624–630. 10.1097/WCO.0000000000000153
    1. Tinga A. M., Visser-Meily J. M., Smag M. J., Stigchel S. V. (2016). Multisensory stimulation to improve low- and higher-level sensory deficits after stroke: a systematic review. Neuropsychol. Rev. 26 73–91. 10.1007/s11065-015-9301-1
    1. Tosun A., Türe S., Askin A., Yardimci E. U., Demirdal S. U., Incesu T. K., et al. (2017). Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study. Topics Stroke Rehab. 24 361–367. 10.1080/10749357.2017.1305644
    1. Umeda T., Isa T., Nishimura Y. (2019). The somatosensory cortex receives information about motor output. Sci. Adv. 5 1–14. 10.1126/sciadv.aaw5388
    1. Varnava A., Stokes M. G., Chambers C. D. (2011). Reliability of the ‘observation of movement’ method for determining motor threshold using transcranial magnetic stimulation. J. Neurosci. Methods 201 327–332. 10.1016/j.jneumeth.2011.08.016
    1. Veinante P., Deschênes M. (2003). Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol. 8 98–103. 10.1002/cne.10769
    1. Vidoni, Acerra N. E., Dao, Meehan S. K., Boyd L. A. (2010). Role of the primary somatosensory cortex in motor learning: An rTMS study. Neurobiol. Learn Mem. 93 532–539. 10.1016/j.nlm.2010.01.011
    1. Wang H., Wang X., Wetzel W., Scheich H. (1999). Rapid-rate transcranial magnetic stimulation in auditory cortex induces LTP and LTD and impairs discrimination learning of frequency-modulated tones. Electroencephalogr. Clin. Neurophysiol. Suppl. 51 361–367.
    1. White E. L., Deamicis R. A. (1977). Afferent and efferent projections of the region in mouse SmL cortex which contains the posteromedial barrel subfield. J. Comp. Neurol. 15 455–482. 10.1002/cne.901750405
    1. Wu C. W., Gelderen P. V., Hanakawa T., Yaseen Z., Cohen L. G. (2005). Enduring representational plasticity after somatosensory stimulation. Neuroimage 27 872–884. 10.1016/j.neuroimage.2005.05.055
    1. Wupuer S., Yamamoto T., Katayama Y., Motohiko H., Sekiguchi S., Matsumura Y., et al. (2013). F-Wave suppression induced by suprathreshold high-frequency repetitive trascranial magnetic stimulation in poststroke patients with increased spasticity. Neuromodulation 16 206–211. 10.1111/j.1525-1403.2012.00520.x
    1. Zhang L., Xing G., Fan Y., Guo Z., Chen H., Mu Q. (2017). Short and long-term effects of rTMS on upper limb motor. Clin rehabilitation 31 1137–1153. 10.1177/0269215517692386

Source: PubMed

3
Abonner