Expression and Function of Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor in Pulp Tissue of Teeth under Orthodontic Movement

Fulan Wei, Shuangyan Yang, Hui Xu, Qingyuan Guo, Qi Li, Lihua Hu, Dongxu Liu, Chunling Wang, Fulan Wei, Shuangyan Yang, Hui Xu, Qingyuan Guo, Qi Li, Lihua Hu, Dongxu Liu, Chunling Wang

Abstract

Orthodontic force may lead to cell damage, circulatory disturbances, and vascular changes of the dental pulp, which make a hypoxic environment in pulp. In order to maintain the homeostasis of dental pulp, hypoxia will inevitably induce the defensive reaction. However, this is a complex process and is regulated by numerous factors. In this study, we established an experimental animal model of orthodontic tooth movement to investigate the effects of mechanical force on the expression of VEGF and HIF-1α in dental pulp. Histological analysis of dental pulp and expressions of HIF-1α and VEGF proteins in dental pulp were examined. The results showed that inflammation and vascular changes happened in dental pulp tissue in different periods. Additionally, there were significant changes in the expression of HIF-1α and VEGF proteins under orthodontic force. After application of mechanical load, expression of HIF-1α and VEGF was markedly positive in 1, 3, 7 d, and 2 w groups, and then it weakened in 4 w group. These findings suggested that the expression of HIF-1α and VEGF was enhanced by mechanical force. HIF-1α and VEGF may play an important role in retaining the homeostasis of dental pulp during orthodontic tooth movement.

Figures

Figure 1
Figure 1
Photomicrograph of histological section of the dental pulp for different time periods. (a) Showing the control group: 1 = odontoblastic layer; 2 = Weil zone (cell-free zone); 3 = cell-rich zone; 4 = central pulp area. (b) Photomicrograph of a histological section showing in detail the odontoblastic layer of the dental pulp of the 1 d group. White arrows indicate the inflammatory cells; black arrows indicate the areas of congested vessels. (c) Photomicrograph of a histological section showing areas of congested vessels and edema in the pulp center of the 3 d group. Arrows indicate the areas of congested vessels. (d) Photomicrograph of a histological section showing areas of congested vessels and edema in the pulp center of the 7 d group. Arrows indicate the congested vessels. (e) Photomicrograph showing the vascularization of the central layer of the pulp of the 2 w group. Arrows indicate the vessels. (f) Photomicrograph showing blood cells inside the vessels of the pulp of the 4 w group (images on the left: magnification ×200, bar = 100 μm; images on the right: magnification ×1000).
Figure 2
Figure 2
Immunohistochemistry analysis of HIF-1α protein expression in rat dental pulp tissue after orthodontic force. HIF-1α protein was weakly stained in control group (a). (b–e) HIF-1α protein expression became strongly stained after 1, 3, and 7 d of orthodontic force and reached the peak level at 2 w group. Then HIF-1α protein expression weakened in the 4 w group but was still higher than the control group (f). Arrows indicate the vessel wall (images on the left: magnification ×200, bar = 100 μm; images on the right: magnification ×1000).
Figure 3
Figure 3
Immunohistochemistry analysis of VEGF protein expression in rat dental pulp tissue after orthodontic force. VEGF protein was weakly stained in control group (a). VEGF protein became slightly stained after 1 d of orthodontic force (b). (c–e) VEGF protein expression became positively stained after 3 d, 7 d, and 2 w after orthodontic force and also reached the peak level at 2 w group. VEGF protein expression then declined in the 4 w group (f). Arrows indicate the vessel wall (images on the left: magnification ×200, bar = 100 μm; images on the right: magnification ×1000).

References

    1. Matsuda N., Morita N., Matsuda K., Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochemical and Biophysical Research Communications. 1998;249(2):350–354. doi: 10.1006/bbrc.1998.9151.
    1. Ramazanzadeh B. A., Sahhafian A. A., Mohtasham N., Hassanzadeh N., Jahanbin A., Shakeri M. T. Histological changes in human dental pulp following application of intrusive and extrusive orthodontic forces. Journal of oral science. 2009;51(1):109–115. doi: 10.2334/josnusd.51.109.
    1. von Böhl M., Ren Y., Fudalej P. S., Kuijpers-Jagtman A. M. Pulpal reactions to orthodontic force application in humans: a systematic review. Journal of Endodontics. 2012;38(11):1463–1469. doi: 10.1016/j.joen.2012.07.001.
    1. Sano Y., Ikawa M., Sugawara J., Horiuchi H., Mitani H. The effect of continuous intrusive force on human pulpal blood flow. European Journal of Orthodontics. 2002;24(2):159–166. doi: 10.1093/ejo/24.2.159.
    1. Santamaria M., Jr., Milagres D., Stuani A. S., Stuani M. B. S., De Oliveira Ruellas A. C. Initial changes in pulpal microvasculature during orthodontic tooth movement: a stereological study. European Journal of Orthodontics. 2006;28(3):217–220. doi: 10.1093/ejo/cji117.
    1. Galler K. M., Yasue A., Cavender A. C., Bialek P., Karsenty G., D'Souza R. N. A novel role for twist-1 in pulp homeostasis. Journal of Dental Research. 2007;86(10):951–955. doi: 10.1177/154405910708601007.
    1. Shigehara S., Matsuzaka K., Inoue T. Morphohistological change and expression of HSP70, osteopontin and osteocalcin mRNAs in rat dental pulp cells with orthodontic tooth movement. The Bulletin of Tokyo Dental College. 2006;47(3):117–124. doi: 10.2209/tdcpublication.47.117.
    1. Folkman J., Shing Y. Angiogenesis. Journal of Biological Chemistry. 1992;267(16):10931–10934.
    1. Loboda A., Jozkowicz A., Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical. Molecules and Cells. 2010;29(5):435–442. doi: 10.1007/s10059-010-0067-2.
    1. Ivan M., Kondo K., Yang H., et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–468. doi: 10.1126/science.1059817.
    1. Mole D. R., Maxwell P. H., Pugh C. W., Ratcliffe P. J. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life. 2001;52(1-2):43–47. doi: 10.1080/15216540252774757.
    1. Yamakawa M., Liu L. X., Date T., et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circulation Research. 2003;93(7):664–673. doi: 10.1161/01.res.0000093984.48643.d7.
    1. Dai J., Rabie A. B. M. VEGF: an essential mediator of both angiogenesis and endochondral ossification. Journal of Dental Research. 2007;86(10):937–950. doi: 10.1177/154405910708601006.
    1. Song I.-W., Li W.-R., Chen L.-Y., et al. Palmitoyl acyltransferase, Zdhhc13, Facilitates bone mass acquisition by regulating postnatal epiphyseal development and endochondral ossification: a mouse model. PLoS ONE. 2014;9(3) doi: 10.1371/journal.pone.0092194.e92194
    1. Maes C., Carmeliet P., Moermans K., et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mechanisms of Development. 2002;111(1-2):61–73. doi: 10.1016/s0925-4773(01)00601-3.
    1. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. The American Journal of Physiology—Cell Physiology. 2001;280(6):C1358–C1366.
    1. Wei F. L., Geng J., Wang H., Zhang B. J., Zhang F. Expression of HIF-1α and VEGF in human dental pulp cells under mechanical stretch. Shanghai Kou Qiang Yi Xue. 2012;21(5):501–505.
    1. Franzen T. J., Brudvik P., Vandevska-Radunovic V. Periodontal tissue reaction during orthodontic relapse in rat molars. European Journal of Orthodontics. 2013;35(2):152–159. doi: 10.1093/ejo/cjr127.
    1. Hou J., Chen Y., Meng X., et al. Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement. Korean Journal of Orthodontics. 2014;44(6):320–329. doi: 10.4041/kjod.2014.44.6.320.
    1. Sabuncuoglu F. A. L., Ersahan S. Changes in maxillary molar pulp blood flow during orthodontic intrusion. Australian Orthodontic Journal. 2014;30(2):152–160.
    1. Konno Y., Daimaruya T., Iikubo M., et al. Morphologic and hemodynamic analysis of dental pulp in dogs after molar intrusion with the skeletal anchorage system. American Journal of Orthodontics and Dentofacial Orthopedics. 2007;132(2):199–207. doi: 10.1016/j.ajodo.2005.07.029.
    1. Tripuwabhrut P., Brudvik P., Fristad I., Rethnam S. Experimental orthodontic tooth movement and extensive root resorption: periodontal and pulpal changes. European Journal of Oral Sciences. 2010;118(6):596–603. doi: 10.1111/j.1600-0722.2010.00786.x.
    1. Lazzaretti D. N., Bortoluzzi G. S., Torres Fernandes L. F., Rodriguez R., Grehs R. A., Martins Hartmann M. S. Histologic evaluation of human pulp tissue after orthodontic intrusion. Journal of Endodontics. 2014;40(10):1537–1540. doi: 10.1016/j.joen.2013.10.039.
    1. Van Uden P., Kenneth N. S., Rocha S. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochemical Journal. 2008;412(3):477–484. doi: 10.1042/bj20080476.
    1. Chae H. S., Park H.-J., Hwang H. R., et al. The effect of antioxidants on the production of pro-inflammatory cytokines and orthodontic tooth movement. Molecules and Cells. 2011;32(2):189–196. doi: 10.1007/s10059-011-0071-1.
    1. Yamaguchi M., Kojima T., Kanekawa M., Aihara N., Nogimura A., Kasai K. Neuropeptides stimulate production of interleukin-1β, interleukin-6, and tumor necrosis factor-α in human dental pulp cells. Inflammation Research. 2004;53(5):199–204. doi: 10.1007/s00011-003-1243-z.
    1. Eltzschig H. K., Carmeliet P. Hypoxia and inflammation. The New England Journal of Medicine. 2011;364(7):656–665. doi: 10.1056/nejmra0910283.
    1. Römer P., Wolf M., Fanghänel J., Reicheneder C., Proff P. Cellular response to orthodontically-induced short-term hypoxia in dental pulp cells. Cell and Tissue Research. 2014;355(1):173–180. doi: 10.1007/s00441-013-1739-y.
    1. Taylor C. T., Cummins E. P. The role of NF-κB in hypoxia-induced gene expression. Annals of the New York Academy of Sciences. 2009;1177:178–184. doi: 10.1111/j.1749-6632.2009.05024.x.
    1. Bonello S., Zähringer C., BelAiba R. S., et al. Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27(4):755–761. doi: 10.1161/01.atv.0000258979.92828.bc.
    1. Cao Y. Angiogenesis modulates adipogenesis and obesity. The Journal of Clinical Investigation. 2007;117(9):2362–2368. doi: 10.1172/jci32239.
    1. Gariano R. F., Gardner T. W. Retinal angiogenesis in development and disease. Nature. 2005;438(7070):960–966. doi: 10.1038/nature04482.
    1. Akeno N., Robins J., Zhang M., Czyzyk-Krzeska M. F., Clemens T. L. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2α . Endocrinology. 2002;143(2):420–425. doi: 10.1210/en.143.2.420.
    1. Motohira H., Hayashi J., Tatsumi J., Tajima M., Sakagami H., Shin K. Hypoxia and reoxygenation augment bone-resorbing factor production from human periodontal ligament cells. Journal of Periodontology. 2007;78(9):1803–1809. doi: 10.1902/jop.2007.060519.
    1. Chen D., Tian W., Li Y., Tang W., Zhang C. Osteoblast-specific transcription factor Osterix (Osx) and HIF-1α cooperatively regulate gene expression of vascular endothelial growth factor (VEGF) Biochemical and Biophysical Research Communications. 2012;424(1):176–181. doi: 10.1016/j.bbrc.2012.06.104.
    1. Semenza G. L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied Physiology. 2000;88(4):1474–1480.
    1. Wan C., Gilbert S. R., Wang Y., et al. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(2):686–691. doi: 10.1073/pnas.0708474105.
    1. Arnett T. R., Gibbons D. C., Utting J. C., et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. Journal of Cellular Physiology. 2003;196(1):2–8. doi: 10.1002/jcp.10321.
    1. Knowles H. J., Athanasou N. A. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. Journal of Pathology. 2009;218(2):256–264. doi: 10.1002/path.2534.
    1. Gerwins P., Sköldenberg E., Claesson-Welsh L. Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Critical Reviews in Oncology/Hematology. 2000;34(3):185–194. doi: 10.1016/s1040-8428(00)00062-7.
    1. Neelam S., Brooks M. M., Cammarata P. R. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia. Molecular Vision. 2013;19:1–15.
    1. Wang Y., Wan C., Deng L., et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. Journal of Clinical Investigation. 2007;117(6):1616–1626. doi: 10.1172/jci31581.

Source: PubMed

3
Abonner