Liver Cirrhosis Affects the Pharmacokinetics of the Six Substrates of the Basel Phenotyping Cocktail Differently

Urs Duthaler, Fabio Bachmann, Claudia Suenderhauf, Tanja Grandinetti, Florian Pfefferkorn, Manuel Haschke, Petr Hruz, Jamal Bouitbir, Stephan Krähenbühl, Urs Duthaler, Fabio Bachmann, Claudia Suenderhauf, Tanja Grandinetti, Florian Pfefferkorn, Manuel Haschke, Petr Hruz, Jamal Bouitbir, Stephan Krähenbühl

Abstract

Background: Activities of hepatic cytochrome P450 enzymes (CYPs) are relevant for hepatic clearance of drugs and known to be decreased in patients with liver cirrhosis. Several studies have reported the effect of liver cirrhosis on CYP activity, but the results are partially conflicting and for some CYPs lacking.

Objective: In this study, we aimed to investigate the CYP activity in patients with liver cirrhosis with different Child stages (A-C) using the Basel phenotyping cocktail approach.

Methods: We assessed the pharmacokinetics of the six compounds and their CYP-specific metabolites of the Basel phenotyping cocktail (CYP1A2: caffeine, CYP2B6: efavirenz, CYP2C9: flurbiprofen, CYP2C19: omeprazole, CYP2D6: metoprolol, CYP3A: midazolam) in patients with liver cirrhosis (n = 16 Child A cirrhosis, n = 15 Child B cirrhosis, n = 5 Child C cirrhosis) and matched control subjects (n = 12).

Results: While liver cirrhosis only marginally affected the pharmacokinetics of the low to moderate extraction drugs efavirenz and flurbiprofen, the elimination rate of caffeine was reduced by 51% in patients with Child C cirrhosis. For the moderate to high extraction drugs omeprazole, metoprolol, and midazolam, liver cirrhosis decreased the elimination rate by 75%, 37%, and 60%, respectively, increased exposure, and decreased the apparent systemic clearance (clearance/bioavailability). In patients with Child C cirrhosis, the metabolic ratio (ratio of the area under the plasma concentration-time curve from 0 to 24 h of the metabolite to the parent compound), a marker for CYP activity, decreased by 66%, 47%, 92%, 73%, and 43% for paraxanthine/caffeine (CYP1A2), 8-hydroxyefavirenz/efavirenz (CYP2B6), 5-hydroxyomeprazole/omeprazole (CYP2C19), α-hydroxymetoprolol/metoprolol (CYP2D6), and 1'-hydroxymidazolam/midazolam (CYP3A), respectively. In comparison, the metabolic ratio 4-hydroxyflurbiprofen/flurbiprofen (CYP2C9) remained unchanged.

Conclusions: Liver cirrhosis affects the activity of CYP isoforms differently. This variability must be considered for dose adjustment of drugs in patients with liver cirrhosis.

Clinical trial registration: NCT03337945.

Conflict of interest statement

None of the authors reports a conflict of interest regarding this study.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Pharmacokinetics of substrates with a low to moderate hepatic extraction. Plasma concentration–time profiles were assessed in n = 16 patients with Child A cirrhosis, n = 15 patients with Child B cirrhosis, n = 5 patients with Child C cirrhosis, and in 12 matched control subjects. The insert displays the semi-logarithmical presentation of the data. The calculated pharmacokinetic variables are displayed in Table 2. Data are presented as mean ± standard error of the mean
Fig. 2
Fig. 2
Pharmacokinetics of substrates with a moderate to high hepatic extraction. Plasma concentration–time profiles were assessed in n = 16 patients with Child A cirrhosis, n = 15 patients with Child B cirrhosis, n = 5 patients with Child C cirrhosis, and in 12 matched control subjects. The insert displays the semi-logarithmical presentation of the data. The calculated pharmacokinetic variables are displayed in Table 4. Data are presented as mean ± standard error of the mean
Fig. 3
Fig. 3
Linear correlation of the prothrombin ratio with the terminal elimination rate constant (ke) for the substrates used in the Basel phenotyping cocktail. The population studied included n = 16 patients with Child A cirrhosis, n = 15 patients with Child B cirrhosis, n = 5 patients with Child C cirrhosis, and in 12 matched control subjects. ke terminal elimination rate constant
Fig. 4
Fig. 4
Linear correlation of the prothrombin ratio with the metabolic ratio for the substrates used in the Baselphenotyping cocktail. The population studied included n = 16 patients with Child A cirrhosis, n = 15 patients with Child B cirrhosis, n = 5 patients with Child C cirrhosis, and in 12 matched control subjects. The metabolic ratio was calculated as the ratio of area under the plasma concentration–time curve from 0 to 24 h for the specific metabolite and area under the plasma concentration–time curve from 0 to 24 h for the parent drug
Fig. 5
Fig. 5
Effect of liver cirrhosis on cytochrome P450 enzyme (CYP) activity. The population studied included n = 16 patients with Child A cirrhosis, n = 15 patients with Child B cirrhosis, n = 5 patients with Child C cirrhosis, and in 12 matched control subjects. Cytochrome P450 enzyme activity was estimated based on the elimination rate constant (ke) or on the metabolic ratio (MR0–24h) of the substrates used in the Basel phenotyping cocktail. The substrates included caffeine (CYP1A2), efavirenz (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A). The MR was calculated as the ratio of area under the plasma concentration–time curve from 0 to 24 h for the specific metabolite and area under the plasma concentration–time curve from 0 to 24 h for the parent drug. Data are displayed as individual values and mean ± standard error of the mean. ke terminal elimination rate constant, *p < 0.05 between patients with liver cirrhosis according to Child class vs control subjects

References

    1. Franz CC, Egger S, Born C, Rätz Bravo AE, Krähenbühl S. Potential drug-drug interactions and adverse drug reactions in patients with liver cirrhosis. Eur J Clin Pharmacol. 2012;68(2):179–188. doi: 10.1007/s00228-011-1105-5.
    1. Lucena MI, Andrade RJ, Tognoni G, Hidalgo R, De La Cuesta FS. Multicenter hospital study on prescribing patterns for prophylaxis and treatment of complications of cirrhosis. Eur J Clin Pharmacol. 2002;58(6):435–440. doi: 10.1007/s00228-002-0474-1.
    1. Lucena MI, Andrade RJ, Tognoni G, Hidalgo R, de la Cuesta FS. Drug use for non-hepatic associated conditions in patients with liver cirrhosis. Eur J Clin Pharmacol. 2003;59(1):71–76. doi: 10.1007/s00228-003-0586-2.
    1. Delco F, Tchambaz L, Schlienger R, Drewe J, Krahenbuhl S. Dose adjustment in patients with liver disease. Drug Saf. 2005;28(6):529–545. doi: 10.2165/00002018-200528060-00005.
    1. Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 2010;49(3):189–206. doi: 10.2165/11318160-000000000-00000.
    1. Taegtmeyer AB, Haschke M, Tchambaz L, Buylaert M, Tschopl M, Beuers U, et al. A study of the relationship between serum bile acids and propranolol pharmacokinetics and pharmacodynamics in patients with liver cirrhosis and in healthy controls. PLoS ONE. 2014;9(6):e97885. doi: 10.1371/journal.pone.0097885.
    1. Franz CC, Hildbrand C, Born C, Egger S, Rätz Bravo AE, Krähenbühl S. Dose adjustment in patients with liver cirrhosis: impact on adverse drug reactions and hospitalizations. Eur J Clin Pharmacol. 2013;69(8):1565–1573. doi: 10.1007/s00228-013-1502-z.
    1. Berger B, Dingemanse J, Sabattini G, Delahaye S, Duthaler U, Muehlan C, et al. Effect of liver cirrhosis on the pharmacokinetics, metabolism, and tolerability of daridorexant, a novel dual orexin receptor antagonist. Clin Pharmacokinet. 2021;60(10):1349–1360. doi: 10.1007/s40262-021-01028-8.
    1. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet. 2002;360(9340):1155–1162. doi: 10.1016/S0140-6736(02)11203-7.
    1. Derungs A, Donzelli M, Berger B, Noppen C, Krähenbühl S, Haschke M. Effects of cytochrome P450 inhibition and induction on the phenotyping metrics of the Basel cocktail: a randomized crossover study. Clin Pharmacokinet. 2016;55(1):79–91. doi: 10.1007/s40262-015-0294-y.
    1. Donzelli M, Derungs A, Serratore MG, Noppen C, Nezic L, Krahenbuhl S, et al. The basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin Pharmacokinet. 2014;53(3):271–282. doi: 10.1007/s40262-013-0115-0.
    1. Suenderhauf C, Berger B, Puchkov M, Schmid Y, Muller S, Huwyler J, et al. Pharmacokinetics and phenotyping properties of the Basel phenotyping cocktail combination capsule in healthy male adults. Br J Clin Pharmacol. 2020;86(2):352–361. doi: 10.1111/bcp.14157.
    1. Camblin M, Berger B, Haschke M, Krahenbuhl S, Huwyler J, Puchkov M. CombiCap, a novel drug formulation for the Basel phenotyping cocktail. Int J Pharm. 2016;512(1):253–261. doi: 10.1016/j.ijpharm.2016.08.043.
    1. Frye RF, Zgheib NK, Matzke GR, Chaves-Gnecco D, Rabinovitz M, Shaikh OS, et al. Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin Pharmacol Ther. 2006;80(3):235–245. doi: 10.1016/j.clpt.2006.05.006.
    1. Kraul H, Truckenbrodt J, Huster A, Töpfer R, Hoffmann A. Comparison of in vitro and in vivo biotransformation in patients with liver disease of differing severity. Eur J Clin Pharmacol. 1991;41(5):475–480. doi: 10.1007/BF00626373.
    1. Renner E, Wietholtz H, Huguenin P, Arnaud MJ, Preisig R. Caffeine: a model compound for measuring liver function. Hepatology. 1984;4(1):38–46. doi: 10.1002/hep.1840040107.
    1. Adedoyin A, Arns PA, Richards WO, Wilkinson GR, Branch RA. Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther. 1998;64(1):8–17. doi: 10.1016/S0009-9236(98)90017-0.
    1. Ohnishi A, Murakami S, Akizuki S, Mochizuki J, Echizen H, Takagi I. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. J Clin Pharmacol. 2005;45(11):1221–1229. doi: 10.1177/0091270005280787.
    1. Larrey D, Babany G, Tinel M, Freneaux E, Amouyal G, Habersetzer F, et al. Effect of liver disease on dextromethorphan oxidation capacity and phenotype: a study in 107 patients. Br J Clin Pharmacol. 1989;28(3):297–304. doi: 10.1111/j.1365-2125.1989.tb05430.x.
    1. Albarmawi A, Czock D, Gauss A, Ehehalt R, Lorenzo Bermejo J, Burhenne J, et al. CYP3A activity in severe liver cirrhosis correlates with Child-Pugh and model for end-stage liver disease (MELD) scores. Br J Clin Pharmacol. 2014;77(1):160–169. doi: 10.1111/bcp.12182.
    1. MacGilchrist AJ, Birnie GG, Cook A, Scobie G, Murray T, Watkinson G, et al. Pharmacokinetics and pharmacodynamics of intravenous midazolam in patients with severe alcoholic cirrhosis. Gut. 1986;27(2):190–195. doi: 10.1136/gut.27.2.190.
    1. Pentikäinen PJ, Välisalmi L, Himberg JJ, Crevoisier C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol. 1989;29(3):272–277. doi: 10.1002/j.1552-4604.1989.tb03327.x.
    1. Trouvin JH, Farinotti R, Haberer JP, Servin F, Chauvin M, Duvaldestin P. Pharmacokinetics of midazolam in anaesthetized cirrhotic patients. Br J Anaesth. 1988;60(7):762–767. doi: 10.1093/bja/60.7.762.
    1. Bickel M, Stephan C, Rottmann C, Carlebach A, Haberl A, Kurowski M, et al. Severe CNS side-effect and persistent high efavirenz plasma levels in a patient with HIV/HCV coinfection and liver cirrhosis. Scand J Infect Dis. 2005;37(6–7):520–522. doi: 10.1080/00365540410020901.
    1. Meynard JL, Lacombe K, Poirier JM, Legrand J, Morand-Joubert L, Girard PM. Influence of liver fibrosis stage on plasma levels of efavirenz in HIV-infected patients with chronic hepatitis B or C. J Antimicrob Chemother. 2009;63(3):579–584. doi: 10.1093/jac/dkn531.
    1. Conn HO. A peek at the Child-Turcotte classification. Hepatology. 1981;1(6):673–676. doi: 10.1002/hep.1840010617.
    1. Preisig R. Foreign substances as indicators of liver function. Schweiz Med Wochenschr Suppl. 1985;19:36–42.
    1. Reichen J, Widmer T, Cotting J. Accurate prediction of death by serial determination of galactose elimination capacity in primary biliary cirrhosis: a comparison with the Mayo model. Hepatology. 1991;14(3):504–510. doi: 10.1002/hep.1840140316.
    1. Ohnishi K, Chin N, Sugita S, Saito M, Tanaka H, Terabayashi H, et al. Quantitative aspects of portal-systemic and arteriovenous shunts within the liver in cirrhosis. Gastroenterology. 1987;93(1):129–134. doi: 10.1016/0016-5085(87)90324-6.
    1. Bachmann F, Blaser L, Haschke M, Krähenbühl S, Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of the major metamizole metabolites in human plasma. Bioanalysis. 2020;12(3):175–189. doi: 10.4155/bio-2019-0251.
    1. Bachmann F, Duthaler U, Krähenbühl S. Effect of deglucuronidation on the results of the Basel phenotyping cocktail. Br J Clin Pharmacol. 2021;87(12):4608–4618. doi: 10.1111/bcp.14874.
    1. Cristofoletti R, Nair A, Abrahamsson B, Groot DW, Kopp S, Langguth P, et al. Biowaiver monographs for immediate release solid oral dosage forms: efavirenz. J Pharm Sci. 2013;102(2):318–329. doi: 10.1002/jps.23380.
    1. Link B, Haschke M, Grignaschi N, Bodmer M, Aschmann YZ, Wenk M, et al. Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol. 2008;66(4):473–484. doi: 10.1111/j.1365-2125.2008.03201.x.
    1. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–390. doi: 10.1002/cpt1975184377.
    1. Kupferschmidt HH, Ha HR, Ziegler WH, Meier PJ, Krähenbühl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995;58(1):20–28. doi: 10.1016/0009-9236(95)90068-3.
    1. Pentikainen PJ, Valisalmi L, Himberg JJ, Crevoisier C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol. 1989;29(3):272–277. doi: 10.1002/j.1552-4604.1989.tb03327.x.
    1. Andersson T, Olsson R, Regårdh CG, Skånberg I. Pharmacokinetics of [14C]omeprazole in patients with liver cirrhosis. Clin Pharmacokinet. 1993;24(1):71–78. doi: 10.2165/00003088-199324010-00006.
    1. Kumar R, Chawla YK, Garg SK, Dixit RK, Satapathy SK, Dhiman RK, et al. Pharmacokinetics of omeprazole in patients with liver cirrhosis and extrahepatic portal venous obstruction. Methods Find Exp Clin Pharmacol. 2003;25(8):625–630. doi: 10.1358/mf.2003.25.8.778083.
    1. Regårdh CG, Jordö L, Ervik M, Lundborg P, Olsson R, Rönn O. Pharmacokinetics of metoprolol in patients with hepatic cirrhosis. Clin Pharmacokinet. 1981;6(5):375–388. doi: 10.2165/00003088-198106050-00004.
    1. Farrell GC, Cooksley WG, Powell LW. Drug metabolism in liver disease: activity of hepatic microsomal metabolizing enzymes. Clin Pharmacol Ther. 1979;26(4):483–492. doi: 10.1002/cpt1979264483.
    1. George J, Murray M, Byth K, Farrell GC. Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology. 1995;21(1):120–128.
    1. Yang LQ, Li SJ, Cao YF, Man XB, Yu WF, Wang HY, et al. Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World J Gastroenterol. 2003;9(2):359–363. doi: 10.3748/wjg.v9.i2.359.
    1. Prasad B, Bhatt DK, Johnson K, Chapa R, Chu X, Salphati L, et al. Abundance of phase 1 and 2 drug-metabolizing enzymes in alcoholic and hepatitis C cirrhotic livers: a quantitative targeted proteomics study. Drug Metab Dispos. 2018;46(7):943–952. doi: 10.1124/dmd.118.080523.
    1. George J, Liddle C, Murray M, Byth K, Farrell GC. Pre-translational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol. 1995;49(7):873–881. doi: 10.1016/0006-2952(94)00515-N.
    1. Berger B, Bachmann F, Duthaler U, Krähenbühl S, Haschke M. Cytochrome P450 enzymes involved in metoprolol metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Front Pharmacol. 2018;9:774. doi: 10.3389/fphar.2018.00774.

Source: PubMed

3
Abonner