Vaccines for pandemic influenza

Catherine J Luke, Kanta Subbarao, Catherine J Luke, Kanta Subbarao

Abstract

Recent outbreaks of highly pathogenic avian influenza in Asia and associated human infections have led to a heightened level of awareness and preparation for a possible influenza pandemic. Vaccination is the best option by which spread of a pandemic virus could be prevented and severity of disease reduced. Production of live attenuated and inactivated vaccine seed viruses against avian influenza viruses, which have the potential to cause pandemics, and their testing in preclinical studies and clinical trials will establish the principles and ensure manufacturing experience that will be critical in the event of the emergence of such a virus into the human population. Studies of such vaccines will also add to our understanding of the biology of avian influenza viruses and their behavior in mammalian hosts.

Figures

Figure
Figure
A) The 8-plasmid reverse genetics system to generate recombinant, live, attenuated pandemic influenza vaccines. Six plasmids encoding the internal genes of the attenuated donor virus are mixed with 2 plasmids encoding the circulating avian virus hemagglutinin (HA) and neuraminidase (NA) genes (which may or may not have been modified to remove virulence motifs). Qualified cells are transfected with the plasmids, and the attenuated reassortant virus is isolated. B). Generation of live, attenuated pandemic influenza vaccine viruses with the 6 internal genes from the attenuated donor virus bearing attenuating mutations (*) and the HA and NA genes from the circulating avian virus by classic reassortment. The 6-2 reassortants generated by this method are selected in the presence of antiserum specific for HA and NA of the attenuated donor virus.

References

    1. Subbarao K, Katz J. Avian influenza viruses infecting humans. Cell Mol Life Sci. 2000;57:1770–84. 10.1007/PL00000657
    1. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 "Spanish" influenza pandemic. Bull Hist Med. 2002;76:105–15. 10.1353/bhm.2002.0022
    1. World Health Organization. Avian influenza: assessing the pandemic threat. [cited 2005 Sep 29]. Available from
    1. Meltzer MI, Cox NJ, Fukuda K. The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis. 1999;5:659–71. 10.3201/eid0505.990507
    1. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:393–6. 10.1126/science.279.5349.393
    1. Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998;351:472–7. 10.1016/S0140-6736(97)11212-0
    1. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, et al. Human infection with influenza H9N2. Lancet. 1999;354:916–7. 10.1016/S0140-6736(99)03311-5
    1. Guo Y, Li J, Cheng X. Discovery of men infected by avian influenza A (H9N2) virus [article in Chinese]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 1999;13:105–8.
    1. Butt KM, Smith GJD, Chen H, Zhang LJ, Leung YHC, Xu KM, et al. Human infection with an avian H9N2 influenza A virus in Hong Kong, 2005. J Clin Microbiol. 2005;43:5760–7. 10.1128/JCM.43.11.5760-5767.2005
    1. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363:617–9. 10.1016/S0140-6736(04)15595-5
    1. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:1356–61. 10.1073/pnas.0308352100
    1. Avian influenza virus A (H10N7) circulating among humans in Egypt. EID Weekly Updates. 2004;2:2.
    1. Apisarnthanarak A, Kitphati R, Thongphubeth K, Patoomanunt P, Anthanont P, Auwanit W, et al. Atypical avian influenza (H5N1). Emerg Infect Dis. 2004;10:1321–4.
    1. de Jong MD, Bach VC, Phan TQ, Vo MH, Tran TT, Nguyen BH, et al. Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352:686–91. 10.1056/NEJMoa044307
    1. Tran TH, Nguyen TL, Nguyen TD, Luong TS, Pham PM, Nguyen VC, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med. 2004;350:1179–88. 10.1056/NEJMoa040419
    1. Shortridge KF. Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine. 1999;17(Suppl 1):S26–9. 10.1016/S0264-410X(99)00102-4
    1. Guan Y, Shortridge KF, Krauss S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A. 1999;96:9363–7. 10.1073/pnas.96.16.9363
    1. Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A. 2000;97:9654–8. 10.1073/pnas.160270697
    1. Hoffmann E, Stech J, Leneva I, Krauss S, Scholtissek C, Chin PS, et al. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol. 2000;74:6309–15. 10.1128/JVI.74.14.6309-6315.2000
    1. Xu X, Subbarao K, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9. 10.1006/viro.1999.9820
    1. Monto AS. Vaccine and antiviral drugs in pandemic preparedness. Emerg Infect Dis. 2006;12. 10.3201/eid1201.051068
    1. Hehme N, Engelmann H, Kunzel W, Neumeier E, Sanger R. Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med Microbiol Immunol (Berl). 2002;191:203–8. 10.1007/s00430-002-0147-9
    1. Stephenson I, Nicholson KG, Gluck R, Mischler R, Newman RW, Palache AM, et al. Safety and antigenicity of whole virus and subunit influenza A/Hong Kong/1073/99 (H9N2) vaccine in healthy adults: phase I randomised trial. Lancet. 2003;362:1959–66. 10.1016/S0140-6736(03)15014-3
    1. Nicholson KG, Colegate AE, Podda A, Stephenson I, Wood J, Ypma E, et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet. 2001;357:1937–43. 10.1016/S0140-6736(00)05066-2
    1. Stephenson I, Nicholson KG, Colegate A, Podda A, Wood J, Ypma E, et al. Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population. Vaccine. 2003;21:1687–93. 10.1016/S0264-410X(02)00632-1
    1. Stephenson I, Bugarini R, Nicholson KG, Podda A, Wood JM, Zambon MC, et al. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis. 2005;191:1210–5. 10.1086/428948
    1. Treanor JJ, Wilkinson BE, Masseoud F, Hu-Primmer J, Battaglia R, O’Brien D, et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine. 2001;19:1732–7. 10.1016/S0264-410X(00)00395-9
    1. Maassab HF, Bryant ML. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev Med Virol. 1999;9:237–44. 10.1002/(SICI)1099-1654(199910/12)9:4<237::AID-RMV252>;2-G
    1. Murphy BR. Use of live attenuated cold-adapted influenza reassortant virus vaccines in infants, children, young adults and elderly adults. Infect Dis Clin Pract. 1993;2:174–81. 10.1097/00019048-199305000-00003
    1. Murphy BR, Coelingh K. Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol. 2002;15:295–323. 10.1089/08828240260066242
    1. Subbarao K, Katz JM. Influenza vaccines generated by reverse genetics. Curr Top Microbiol Immunol. 2004;283:313–42.
    1. Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol. 1994;68:3120–8.
    1. Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, et al. Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology. 2003;305:192–200. 10.1006/viro.2002.1742
    1. Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, et al. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet. 2004;363:1099–103. 10.1016/S0140-6736(04)15892-3
    1. Lipatov AS, Webby RJ, Govorkova EA, Krauss S, Webster RG. Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis. 2005;191:1216–20. 10.1086/428951
    1. Nicolson C, Major D, Wood JM, Robertson JS. Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine. 2005;23:2943–52. 10.1016/j.vaccine.2004.08.054
    1. Chen H, Matsuoka Y, Swayne D, Chen Q, Cox NJ, Murphy BR, et al. Generation and characterization of a cold-adapted influenza A H9N2 reassortant as a live pandemic influenza virus vaccine candidate. Vaccine. 2003;21:4430–6. 10.1016/S0264-410X(03)00430-4
    1. Longini IM Jr, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DA, et al. Containing pandemic influenza at the source. Science. 2005;309:1083–7. 10.1126/science.1115717

Source: PubMed

3
Abonner