Population pharmacokinetics of intravenous sufentanil in critically ill patients supported with extracorporeal membrane oxygenation therapy

Jongsung Hahn, Seungwon Yang, Kyoung Lok Min, Dasohm Kim, Byung Hak Jin, Changhun Park, Min Soo Park, Jin Wi, Min Jung Chang, Jongsung Hahn, Seungwon Yang, Kyoung Lok Min, Dasohm Kim, Byung Hak Jin, Changhun Park, Min Soo Park, Jin Wi, Min Jung Chang

Abstract

Background: Sufentanil is commonly used for analgesia and sedation during extracorporeal membrane oxygenation (ECMO). Both ECMO and the pathophysiological changes derived from critical illness have significant effects on the pharmacokinetics (PK) of drugs, yet reports of ECMO and sufentanil PK are scarce. Here, we aimed to develop a population PK model of sufentanil in ECMO patients and to suggest dosing recommendations.

Methods: This prospective cohort PK study included 20 patients who received sufentanil during venoarterial ECMO (VA-ECMO). Blood samples were collected for 96 h during infusion and 72 h after cessation of sufentanil. A population PK model was developed using nonlinear mixed effects modelling. Monte Carlo simulations were performed using the final PK parameters with two typical doses.

Results: A two-compartment model best described the PK of sufentanil. In our final model, increased volume of distribution and decreased values for clearance were reported compared with previous PK data from non-ECMO patients. Covariate analysis showed that body temperature and total plasma protein level correlated positively with systemic clearance (CL) and peripheral volume of distribution (V2), respectively, and improved the model. The parameter estimates of the final model were as follows: CL = 37.8 × EXP (0.207 × (temperature - 36.9)) L h-1, central volume of distribution (V1) = 229 L, V2 = 1640 × (total plasma protein/4.5)2.46 L, and intercompartmental clearance (Q) = 41 L h-1. Based on Monte Carlo simulation results, an infusion of 17.5 μg h-1 seems to reach target sufentanil concentration (0.3-0.6 μg L-1) in most ECMO patients except hypothermic patients (33 °C). In hypothermic patients, over-sedation, which could induce respiratory depression, needs to be monitored especially when their total plasma protein level is low.

Conclusions: This is the first report on a population PK model of sufentanil in ECMO patients. Our results suggest that close monitoring of the body temperature and total plasma protein level is crucial in ECMO patients who receive sufentanil to provide effective analgesia and sedation and promote recovery.

Trial registration: Clinicaltrials.gov NCT02581280 , December 1st, 2014.

Keywords: Anaesthetics, intravenous; Extracorporeal membrane oxygenation; Pharmacokinetics; Sufentanil; Temperature.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Goodness-of-fit plots of the final population pharmacokinetic model. Log of observed sufentanil concentrations versus log of population predicted concentrations (a) and versus log of individual predicted concentrations (b), and conditional weighted residuals (CWRES) versus population predicted concentrations (c) and versus time (d)
Fig. 2
Fig. 2
Prediction-corrected visual predictive checks (pc-VPCs) of the final population pharmacokinetic model. Open circles, observed sufentanil concentrations; solid line, median; lower and upper dashed lines, 5th and 95th percentiles of the simulated data, respectively; shaded areas, 95% confidence intervals for simulated predicted median, 5th percentile, and 95th percentile constructed from 1000 simulated datasets of individuals from the original dataset
Fig. 3
Fig. 3
Simulated mean sufentanil concentrations for 120-h sufentanil infusion in patients. Patients were stratified for body temperature (a, c) or total plasma protein (b, d). a 12.5 μg h−1 infusion in patients with total plasma protein levels of 4.5 g dL−1. b 12.5 μg h−1 infusion in patients with body temperatures of 36.9 °C. c 17.5 μg h−1 infusion in patients with total plasma protein levels of 4.5 g dL−1. d 17.5 μg h−1 infusion in patients with body temperatures of 36.9 °C

References

    1. Asaumi Y, Yasuda S, Morii I, Kakuchi H, Otsuka Y, Kawamura A, Sasako Y, Nakatani T, Nonogi H, Miyazaki S. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation. Eur Heart J. 2005;26(20):2185–2192. doi: 10.1093/eurheartj/ehi411.
    1. Shekar K, Mullany DV, Thomson B, Ziegenfuss M, Platts DG, Fraser JF. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Critical Care. 2014;18(3):219. doi: 10.1186/cc13865.
    1. Adkins KL. Sedation strategies for extracorporeal membrane oxygenation support. ASAIO J. 2017;63(2):113–114. doi: 10.1097/MAT.0000000000000536.
    1. Wildschut ED, Hanekamp MN, Vet NJ, Houmes RJ, Ahsman MJ, Mathot RA, de Wildt SN, Tibboel D. Feasibility of sedation and analgesia interruption following cannulation in neonates on extracorporeal membrane oxygenation. Intensive Care Med. 2010;36(9):1587–1591. doi: 10.1007/s00134-010-1931-4.
    1. Anton-Martin P, Modem V, Taylor D, Potter D, Darnell-Bowens C. A retrospective study of sedation and analgesic requirements of pediatric patients on extracorporeal membrane oxygenation (ECMO) from a single-center experience. Perfusion. 2017;32(3):183–191. doi: 10.1177/0267659116670483.
    1. Zalieckas J, Weldon C. Sedation and analgesia in the ICU. Semin Pediatr Surg. 2015;24(1):37–46. doi: 10.1053/j.sempedsurg.2014.11.011.
    1. DeBerry BB, Lynch JE, Chernin JM, Zwischenberger JB, Chung DH. A survey for pain and sedation medications in pediatric patients during extracorporeal membrane oxygenation. Perfusion. 2005;20(3):139–143. doi: 10.1191/0267659105pf801oa.
    1. DeGrado JR, Hohlfelder B, Ritchie BM, Anger KE, Reardon DP, Weinhouse GL. Evaluation of sedatives, analgesics, and neuromuscular blocking agents in adults receiving extracorporeal membrane oxygenation. J Crit Care. 2017;37:1–6. doi: 10.1016/j.jcrc.2016.07.020.
    1. Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology. 1984;61(5):502–506. doi: 10.1097/00000542-198411000-00004.
    1. Meuldermans W, Hurkmans R, Heykants J. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther. 1982;257(1):4–19.
    1. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet. 1996;31(4):275–292. doi: 10.2165/00003088-199631040-00004.
    1. Shekar K, Roberts JA, Welch S, Buscher H, Rudham S, Burrows F, Ghassabian S, Wallis SC, Levkovich B, Pellegrino V, et al. ASAP ECMO: Antibiotic, Sedative and Analgesic Pharmacokinetics during Extracorporeal Membrane Oxygenation: a multi-centre study to optimise drug therapy during ECMO. BMC Anesthesiol. 2012;12:29. doi: 10.1186/1471-2253-12-29.
    1. Shekar K, Fraser JF, Smith MT, Roberts JA. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012;27(6):741.e749–741.e718. doi: 10.1016/j.jcrc.2012.02.013.
    1. Tukacs M. Pharmacokinetics and extracorporeal membrane oxygenation in adults: a literature review. AACN Adv Crit Care. 2018;29(3):246–258. doi: 10.4037/aacnacc2018439.
    1. Ha MA, Sieg AC. Evaluation of altered drug pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation. Pharmacotherapy. 2017;37(2):221–235. doi: 10.1002/phar.1882.
    1. Hudson RJ, Thomson IR, Jassal R. Effects of cardiopulmonary bypass on sufentanil pharmacokinetics in patients undergoing coronary artery bypass surgery. Anesthesiology. 2004;101(4):862–871. doi: 10.1097/00000542-200410000-00010.
    1. Raffaeli G, Allegaert K, Koch B, Cavallaro G, Mosca F, Tibboel D, Wildschut ED. In vitro adsorption of analgosedative drugs in new extracorporeal membrane oxygenation circuits. Pediatr Crit Care Med. 2018;19(5):e251–e258. doi: 10.1097/PCC.0000000000001484.
    1. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2:e38. doi: 10.1038/psp.2013.14.
    1. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit--a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Prog Biomed. 2005;79(3):241–257. doi: 10.1016/j.cmpb.2005.04.005.
    1. Slepchenko G, Simon N, Goubaux B, Levron JC, Le Moing JP, Raucoules-Aime M. Performance of target-controlled sufentanil infusion in obese patients. Anesthesiology. 2003;98(1):65–73. doi: 10.1097/00000542-200301000-00014.
    1. Ethuin F, Boudaoud S, Leblanc I, Troje C, Marie O, Levron J-C, Le Moing J-P, Assoune P, Eurin B, Jacob L. Pharmacokinetics of long-term sufentanil infusion for sedation in ICU patients. Intensive Care Med. 2003;29(11):1916–1920. doi: 10.1007/s00134-003-1920-y.
    1. Medzihradsky F, Emmerson PJ, Mousigian CA. Lipophilicity of opioids determined by a novel micromethod. 1992.
    1. Campbell GA, Morgan DJ, Kumar K, Crankshaw DP. Extended blood collection period required to define distribution and elimination kinetics of propofol. Br J Clin Pharmacol. 1988;26(2):187–190. doi: 10.1111/j.1365-2125.1988.tb03386.x.
    1. Bartkowska-Sniatkowska A, Bienert A, Wiczling P, Rosada-Kurasinska J, Zielinska M, Warzybok J, Borsuk A, Tibboel D, Kaliszan R, Grzeskowiak E. Pharmacokinetics of sufentanil during long-term infusion in critically ill pediatric patients. J Clin Pharmacol. 2016;56(1):109–115. doi: 10.1002/jcph.577.
    1. Liu MZ, Silvern DA, Gupte PM, Inchiosa MA, Jr, Sanchala V. Development of a real-time algorithm for predicting sufentanil plasma levels during cardiopulmonary-bypass surgery using a systems approach. IEEE Trans Biomed Eng. 1992;39(6):658–661. doi: 10.1109/10.141206.
    1. Okutani R, Philbin DM, Rosow CE, Koski G, Schneider RC. Effect of hypothermic hemodilutional cardiopulmonary bypass on plasma sufentanil and catecholamine concentrations in humans. Anesth Analg. 1988;67(7):667–670. doi: 10.1213/00000539-198807000-00010.
    1. Flezzani P, Alvis MJ, Jacobs JR, Schilling MM, Bai S, Reves JG. Sufentanil disposition during cardiopulmonary bypass. Can J Anaesth. 1987;34(6):566–569. doi: 10.1007/BF03010512.
    1. Fritz HG, Holzmayr M, Walter B, Moeritz KU, Lupp A, Bauer R. The effect of mild hypothermia on plasma fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg. 2005;100(4):996–1002. doi: 10.1213/01.ANE.0000146517.17910.54.
    1. Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):2196–2204. doi: 10.1097/01.CCM.0000281517.97507.6E.
    1. Lv J, Liu F, Feng N, Sun X, Tang J, Xie L, Wang Y. CYP3A4 gene polymorphism is correlated with individual consumption of sufentanil. Acta Anaesthesiol Scand. 2018;62(10):1367–1373. doi: 10.1111/aas.13178.
    1. Zhang H, Chen M, Wang X, Yu S. Patients with CYP3A4*1G genetic polymorphism consumed significantly lower amount of sufentanil in general anesthesia during lung resection. Medicine. 2017;96(4):e6013. doi: 10.1097/MD.0000000000006013.
    1. Yuan JJ, Hou JK, Zhang W, Chang YZ, Li ZS, Wang ZY, Du YY, Ma XJ, Zhang LR, Kan QC, et al. CYP3A4 * genetic polymorphism influences metabolism of fentanyl in human liver microsomes in Chinese patients. Pharmacology. 2015;96(1–2):55–60. doi: 10.1159/000433441.
    1. Danielak D, Karaźniewicz-Łada M, Wiśniewska K, Bergus P, Burchardt P, Komosa A, Główka F. Impact of CYP3A4*1G allele on clinical pharmacokinetics and pharmacodynamics of clopidogrel. Eur J Drug Metab Pharmacokinet. 2017;42(1):99–107. doi: 10.1007/s13318-016-0324-7.
    1. Ouellet D, Periclou AP, Johnson RD, Woodworth JR, Lalonde RL. Population pharmacokinetics of pemetrexed disodium (ALIMTA) in patients with cancer. Cancer Chemother Pharmacol. 2000;46(3):227–34. doi: 10.1007/s002800000144.
    1. Ogawa R, Kobayashi S, Sasaki Y, Makimura M, Echizen H. Population pharmacokinetic and pharmacodynamic analyses of teicoplanin in Japanese patients with systemic MRSA infection. Int J Clin Pharmacol Ther. 2013;51(5):357–366. doi: 10.5414/CP201739.
    1. Moffett BS, Morris J, Galati M, Munoz F, Arikan AA. Population pharmacokinetics of vancomycin in pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med. 2018;19(10):973–980. doi: 10.1097/PCC.0000000000001682.
    1. Guan XF, Li DY, Yin WJ, Ding JJ, Zhou LY, Wang JL, Ma RR, Zuo XC. Population pharmacokinetic modeling of diltiazem in Chinese renal transplant recipients. Eur J Drug Metab Pharmacokinet. 2018;43(1):55–62. doi: 10.1007/s13318-017-0425-y.
    1. Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, Watson PL, Weinhouse GL, Nunnally ME, Rochwerg B, et al. Executive summary: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):1532–1548. doi: 10.1097/CCM.0000000000003259.
    1. deBacker J, Tamberg E, Munshi L, Burry L, Fan E, Mehta S. Sedation practice in extracorporeal membrane oxygenation-treated patients with acute respiratory distress syndrome: a retrospective study. ASAIO J. 2018;64(4):544–551. doi: 10.1097/MAT.0000000000000658.
    1. Jeleazcov C, Saari TI, Ihmsen H, Schuttler J, Fechner J. Changes in total and unbound concentrations of sufentanil during target controlled infusion for cardiac surgery with cardiopulmonary bypass. Br J Anaesth. 2012;109(5):698–706. doi: 10.1093/bja/aes253.
    1. Fechner J, Ihmsen H, Schuttler J, Jeleazcov C. The impact of intra-operative sufentanil dosing on post-operative pain, hyperalgesia and morphine consumption after cardiac surgery. Eur J Pain. 2013;17(4):562–570. doi: 10.1002/j.1532-2149.2012.00211.x.
    1. Bourgoin A, Albanese J, Leone M, Sampol-Manos E, Viviand X, Martin C. Effects of sufentanil or ketamine administered in target-controlled infusion on the cerebral hemodynamics of severely brain-injured patients. Crit Care Med. 2005;33(5):1109–1113. doi: 10.1097/01.CCM.0000162491.26292.98.
    1. Zhao Y, Zhang LP, Wu XM, Jiang JY, Duan JL, Hu YF, Li M, Liu W, Sheng XY, Ni C, et al. Clinical evaluation of target controlled infusion system for sufentanil administration. Chin Med J. 2009;122(20):2503–2508.

Source: PubMed

3
Abonner