A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

Fatih M Uckun, Tara L Lin, Alice S Mims, Prapti Patel, Cynthia Lee, Anoush Shahidzadeh, Paul J Shami, Elizabeth Cull, Christopher R Cogle, Justin Watts, Fatih M Uckun, Tara L Lin, Alice S Mims, Prapti Patel, Cynthia Lee, Anoush Shahidzadeh, Paul J Shami, Elizabeth Cull, Christopher R Cogle, Justin Watts

Abstract

APVO436 is a recombinant T cell-engaging humanized bispecific antibody designed to redirect host T cell cytotoxicity in an MHC-independent manner to CD123-expressing blast cells from patients with hematologic malignancies and has exhibited single-agent anti-leukemia activity in murine xenograft models of acute myeloid leukemia (AML). In this first-in-human (FIH) multicenter phase 1B study, we sought to determine the safety and tolerability of APVO436 in R/R AML/myelodysplastic syndrome (MDS) patients and identify a clinically active recommended phase 2 dose (RP2D) level for its further clinical development. A total of 46 R/R AML/MDS patients who had failed 1-8 prior lines of therapy received APVO436 as weekly intravenous (IV) infusions at 10 different dose levels, ranging from a Minimum Anticipated Biological Effect Level (MABEL) of 0.3 mcg to 60 mcg. APVO436 exhibited a favorable safety profile with acceptable tolerability and manageable drug-related adverse events (AEs), and its maximum tolerated dose (MTD) was not reached at a weekly dose of 60 mcg. The most common APVO436-related AEs were infusion-related reactions (IRR) occurring in 13 (28.3%) patients and cytokine release syndrome (CRS) occurring in 10 (21.7%). The single dose RP2D level was identified as 0.2 mcg/kg. Preliminary efficacy signals were observed in both AML and MDS patients: Prolonged stable disease (SD), partial remissions (PR), and complete remissions (CR) were observed in R/R AML patients as best overall responses to APVO436 at the RP2D level. Three of six evaluable MDS patients had marrow CRs. The safety and preliminary evidence of efficacy of APVO436 in R/R AML and MDS patients warrant further investigation of its clinical impact potential.

Keywords: AML; APVO436; CD123; MDS; T cells; bispecific antibody; clinical study; leukemia.

Conflict of interest statement

T.L.L., P.P., P.J.S., E.C., C.R.C. and J.W. and their institutions received research funding in the form of investigative site awards from Aptevo Therapeutics for conducting the study. F.M.U., A.S. and C.L. received compensation from Aptevo Therapeutics as a consultant. No other disclosures are reported.

Figures

Figure 1
Figure 1
Simplified schematic explaining the mode of action of APVO436. APVO436 targeting CD123 on AML cells and redirecting CD3+ T cells to the close vicinity of the target leukemia cells. APVO436 is a humanized bispecific antibody that targets both CD123 and CD3. It is composed of two sets of binding domains linked to a human IgG1 Fc domain. The CD123 binding domain is a fully human scFv directed against human CD123. The CD3 binding domain is a humanized scFv that binds human CD3. The Fc region has been engineered to minimize complement fixation and interaction with Fcγ receptors.
Figure 2
Figure 2
Swimmer plot of best overall responses of the eight-patient favorable response population of R/R AML patients. The onset and duration of SD, PR, CR, clearance of peripheral blasts (PBB-C), bone marrow relapse (BM REL), and onset of PD are indicated with specific symbols. Arrow: alive. See Table 4 and text for additional details.
Figure 3
Figure 3
Survival outcome of AML patients according to response to APVO436. Depicted are the overall survival curves of the 8 patients’ favorable responses, 31 patients who did not respond, and all 39 patients combined. Favorable responses of CR, PR, or SD ≥ 3 months was associated with improved overall survival in R/R AML patients treated with APVO436 monotherapy.

References

    1. Boddu P., Kantarjian H., Ravandi F., Daver N. Emerging molecular and immune therapies in acute myeloid leukemia. Am. J. Hematol. Oncol. 2017;13:12.
    1. Perl A.E., Martinelli G., Cortes J., Neubauer A., Berman E., Paolini S., Montesinos P., Baer M.R., Larson R.A., Ustun C., et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019;381:1728–1740. doi: 10.1056/NEJMoa1902688.
    1. Dinardo C.D., Pratz K., Pullarkat V., Jonas B., Arellano M., Becker P.S., Frankfurt O., Konopleva M., Wei A.H., Kantarjian H.M., et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17. doi: 10.1182/blood-2018-08-868752.
    1. Othman A.T., Azenkot T., Moskoff N.B., Tenold E.M., Jonas A.B. Venetoclax-based combinations for the treatment of newly diagnosed acute myeloid leukemia. Future Oncol. 2021;17:2989–3005. doi: 10.2217/fon-2021-0262.
    1. Song M.-K., Park B.-B., Uhm J.-E. Targeted Therapeutic Approach Based on Understanding of Aberrant Molecular Pathways Leading to Leukemic Proliferation in Patients with Acute Myeloid Leukemia. Int. J. Mol. Sci. 2021;22:5789. doi: 10.3390/ijms22115789.
    1. Allen C., Zeidan A., Bewersdorf J. BiTEs, DARTS, BiKEs and TriKEs—Are Antibody Based Therapies Changing the Future Treatment of AML? Life. 2021;11:465. doi: 10.3390/life11060465.
    1. Loke J., Vyas H., Craddock C. Optimizing Transplant Approaches and Post-Transplant Strategies for Patients With Acute Myeloid Leukemia. Front. Oncol. 2021;11:666091. doi: 10.3389/fonc.2021.666091.
    1. Mims A.S., Blum W. Progress in the problem of relapsed or refractory acute myeloid leukemia. Curr. Opin. Hematol. 2019;26:88–95. doi: 10.1097/MOH.0000000000000490.
    1. Schlenk R.F., Muller-Tidow C., Benner A., Kieser M. Relapsed/refractory acute myeloid leukemia: Any progress? Curr. Opin. Oncol. 2017;29:467–473. doi: 10.1097/CCO.0000000000000404.
    1. Lai C., Doucette K., Norsworthy K. Recent drug approvals for acute myeloid leukemia. J. Hematol. Oncol. 2019;12:100. doi: 10.1186/s13045-019-0774-x.
    1. Ferrara F., Lessi F., Vitagliano O., Birkenghi E., Rossi G. Current Therapeutic Results and Treatment Options for Older Patients with Relapsed Acute Myeloid Leukemia. Cancers. 2019;11:224. doi: 10.3390/cancers11020224.
    1. Dinardo C.D., Wei A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135:85–96. doi: 10.1182/blood.2019001239.
    1. Blum W.G., Mims A.S. Treating acute myeloid leukemia in the modern era: A primer. Cancer. 2020;126:4668–4677. doi: 10.1002/cncr.32904.
    1. Thol F., Heuser M. Treatment for Relapsed/Refractory Acute Myeloid Leukemia. HemaSphere. 2021;5:e572. doi: 10.1097/HS9.0000000000000572.
    1. Short N.J., Konopleva M., Kadia T.M., Borthakur G., Ravandi F., Dinardo C.D., Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov. 2020;10:506–525. doi: 10.1158/-19-1011.
    1. Daver N., Wei A.H., Pollyea D.A., Fathi A.T., Vyas P., DiNardo C.D. New directions for emerging therapies in acute myeloid leukemia: The next chapter. Blood Cancer J. 2020;10:107. doi: 10.1038/s41408-020-00376-1.
    1. Testa U., Riccioni R., Coccia E., Stellacci E., Samoggia P., Latagliata R., Latagliata R., Mariani G., Rossini A., Battistini A., et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity and poor prognosis. Blood J. Am. Soc. Hematol. 2002;100:2980–2988.
    1. Hwang K., Park C.J., Jang S., Chi H.S., Kim D.Y., Lee J.H., Im H.J., Seo J.J. Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann. Hematol. 2012;91:1541–1546. doi: 10.1007/s00277-012-1501-7.
    1. Jin L., Lee E.M., Ramshaw H.S., Busfiled S.J., Peoppl A.G., Wilkinson L., Wilkinson L., Guthridge M.A., Thomas D., Barry E.F., et al. Monoclonal-antibody mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemia stem cells. Cell Stem Cell. 2009;5:31–42. doi: 10.1016/j.stem.2009.04.018.
    1. Jordan C.T., Upchurch D., Szilvassy S.J., Guzman M.L., Howard D.S., Pettigrew A.L., Meyerrose T., Rossi R., Grimes B., Rizzieri D.A., et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–1784. doi: 10.1038/sj.leu.2401903.
    1. Testa U., Pelosi E., Frankel A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark. Res. 2014;2:4. doi: 10.1186/2050-7771-2-4.
    1. Vergez F., Green A.S., Tamburini J., Sarry J.E., Gaillard B., Cornillet-Lefebvre P., Pannetier M., Neyret A., Chapuis N., Ifrah N., et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: A Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96:1792–1798. doi: 10.3324/haematol.2011.047894.
    1. Al Hussaini M.M.H., Ritchey J., Rettig M.P., Eissenberg L., Uy G.L., Chichili G., A Moore P., Johnson S., Collins L., Bonvini E., et al. Targeting CD123 In Leukemic Stem Cells Using Dual Affinity Re-Targeting Molecules (DARTs®) Blood. 2013;122:360. doi: 10.1182/blood.V122.21.360.360.
    1. Aldoss I., Uy G.L., Vey N., Emadi A., Sayre M.P.H., Walter M.R.B., Foster M.C., Arellano M.L., Godwin J.E., Wieduwilt M.J., et al. Flotetuzumab As Salvage Therapy for Primary Induction Failure and Early Relapse Acute Myeloid Leukemia. Blood. 2020;136:16–18. doi: 10.1182/blood-2020-134576.
    1. Daver N., Alotaibi A.S., Bücklein V., Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: Current concepts and future developments. Leukemia. 2021;35:1843–1863. doi: 10.1038/s41375-021-01253-x.
    1. Kovtun Y., Jones G.E., Adams S., Harvey L., Audette C.A., Wilhelm A., Bai C., Rui L., Laleau R., Liu F., et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2:848–858. doi: 10.1182/bloodadvances.2018017517.
    1. Einsele H., Borghaei H., Orlowski R., Subklewe M., Roboz G.J., Zugmaier G., Kufer P., Iskander K., Kantarjian H.M. The BiTE (Bispecific T-cell Engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020;126:3192–3201. doi: 10.1002/cncr.32909.
    1. Isidori A., Cerchione C., Daver N., DiNardo C., Garcia-Manero G., Konopleva M., Jabbour E., Ravandi F., Kadia T., Burguera A.D.L.F., et al. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front. Oncol. 2021;11:656218. doi: 10.3389/fonc.2021.656218.
    1. Huehls A.M., Coupet T.A., Sentman C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 2014;93:290–296. doi: 10.1038/icb.2014.93.
    1. Comeau M.R., Gottschalk R., Daugherty M., Sewell T., Sewell T., Misher L., Bannink J., Johnson S., Parr L., Kumer J., et al. APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity with limited cytokine release, is well tolerated in repeat dose toxicology studies in cynomolgus macaques; Proceedings of the American Association for Cancer Research Annual Meeting 2019; Atlanta, GA, USA. 29 March–3 April 2019; Philadelphia, PA, USA: AACR; 2019.
    1. Comeau M.R., Miller R.E., Bannink J., Johnson S., Bader R., Gottschalk R., Misher L., Mitchell D., Parr L., DeFrancesco M., et al. Characterization of APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, in preclinical models of AML and nonhuman primates; Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; Philadelphia, PA, USA. 26–30 October 2017; Philadelphia, PA, USA: AACR; 2018.
    1. Comeau M.R., Miller R.E., Bannink J., Johnson S., Bader R., Gottschalk R., Daugherty M., Sewell T., Misher L., Mitchell D., et al. APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release; Proceedings of the American Association for Cancer Research Annual Meeting 2018; Chicago, IL, USA. 14–18 April 2018; Philadelphia, PA, USA: AACR; 2018.
    1. Comeau M.R., Mitchell D., Gottschalk R., Misher L., Daugherty M., Parr L., Pavlik P., Woodruff B., Fang H., Aguilar M., et al. Bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecules for redirected T-cell cytotoxicity in hematological malignancies; Proceedings of the American Association for Cancer Research Annual Meeting 2017; Washington, DC, USA. 1–5 April 2017; Philadelphia, PA, USA: AACR; 2017.
    1. Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703.
    1. Muller P.Y., Milton M., Lloyd P., Sims J., Brennan F.R. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr. Opin. Biotechnol. 2009;20:722–729. doi: 10.1016/j.copbio.2009.10.013.
    1. Lee D.W., Gardner R., Porter D.L., Louis C.U., Ahmed N., Jensen M.C., Grupp S.A., Mackall C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–195. doi: 10.1182/blood-2014-05-552729.
    1. Döhner H., Estey E., Grimwade D., Amadori S., Appelbaum F.R., Büchner T., Dombret H., Ebert B.L., Fenaux P., Larson R.A., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447. doi: 10.1182/blood-2016-08-733196.
    1. Uckun F.M., Cogle C.R., Lin T.L., Qazi S., Trieu V.N., Schiller G., Watts J.M. A Phase 1B Clinical Study of Combretastatin A1 Diphosphate (OXi4503) and Cytarabine (ARA-C) in Combination (OXA) for Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers. 2019;12:74. doi: 10.3390/cancers12010074.
    1. Uckun F.M., Qazi S., Hwang L., Trieu V.N. Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGFβ2-Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up. Cancers. 2019;11:1892. doi: 10.3390/cancers11121892.
    1. Uckun F.M., Carlson J., Orhan C., Powell J., Pizzimenti N.M., Van Wyk H., Ozercan I.H., Volk M., Sahin K. Rejuveinix Shows a Favorable Clinical Safety Profile in Human Subjects and Exhibits Potent Preclinical Protective Activity in the Lipopolysaccharide-Galactosamine Mouse Model of Acute Respiratory Distress Syndrome and Multi-Organ Failure. Front. Pharmacol. 2020;11:594321. doi: 10.3389/fphar.2020.594321.
    1. Ravandi F., Walter R.B., Subklewe M., Buecklein V., Jongen-Lavrencic M., Paschka P., Ossenkoppele G.J., Kantarjian H.M., Hindoyan A., Agarwal S.K., et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML) J. Clin. Oncol. 2020;38:7508. doi: 10.1200/JCO.2020.38.15_suppl.7508.
    1. Bargou R., Leo E., Zugmaier G., Klinger M., Goebeler M., Knop S., Noppeney R., Viardot A., Hess G., Schuler M., et al. Tumor Regression in Cancer Patients by Very Low Doses of a T Cell-Engaging Antibody. Science. 2008;321:974–977. doi: 10.1126/science.1158545.
    1. Subklewe M., Stein A., Walter R.B., Bhatia R., Wei A.H., Ritchie D., Bücklein V., Vachhani P., Dai T., Hindoyan A., et al. Updated Results from a Phase 1 First-in-Human Dose Escalation Study of AMG 673, a Novel Anti-CD33/CD3 BiTE® (Bispecific T-cell Engager) in Patients with Relapsed/Refractory Acute Myeloid Leukemia. European Hematology Association; Brussels, Belgium: 2020. Abstract:EP548.
    1. Uy G.L., Aldoss I., Foster M.C., Sayre P.H., Wieduwilt M.J., Advani A.S., Godwin J.E., Arellano M.L., Sweet K.L., Emadi A., et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137:751–762. doi: 10.1182/blood.2020007732.
    1. Vadakekolathu J., Lai C., Reeder S., Church S.E., Hood T., Lourdusamy A., Rettig M.P., Aldoss I., Advani A.S., Godwin J., et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020;4:5011–5024. doi: 10.1182/bloodadvances.2020002512.
    1. Ravandi F., Bashey A., Stock W., Foran J.M., Mawad R., Egan D., Blum W., Yang A., Pastore A., Johnson C., et al. Complete Responses in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of Vibecotamab (XmAb14045), a CD123 x CD3 T Cell-Engaging Bispecific Antibody; Initial Results of a Phase 1 Study. Blood. 2020;136:4–5. doi: 10.1182/blood-2020-134746.
    1. Sato N., Caux C., Kitamura T., Watanabe Y., Arai K.I., Banchereau J., Miyajima A. Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood. 1993;82:752–761. doi: 10.1182/blood.V82.3.752.752.
    1. Wognum A.W., De Jong M.O., Wagemaker G. Differential expression of receptors for hemopoietic growth factors on subsets of CD34+ hemopoietic cells. Leuk. Lymphoma. 1996;24:11–25. doi: 10.3109/10428199609045710.
    1. Manz M.G., Miyamoto T., Akashi K., Weissman I.L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA. 2002;99:11872–11877. doi: 10.1073/pnas.172384399.
    1. Taussig D.C., Pearce D.J., Simpson C., Rohatiner A.Z., Lister T.A., Kelly G., Luongo J.L., Danet-Desnoyers G.A., Bonnet D. Hematopoietic stem cells express multiple myeloid markers: Implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–4092. doi: 10.1182/blood-2005-03-1072.
    1. Daver N.G., Montesinos P., DeAngelo D.J., Wang E.S., Papadantonakis N., Deconinck E., Erba H.P., Pemmaraju N., Lane A.A., Rizzieri D.A., et al. Clinical Profile of IMGN632, a Novel Cd123-Targeting Antibody-Drug Conjugate (ADC), in Patients With Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (Bpdcn) Blood. 2019;134:734. doi: 10.1182/blood-2019-128648.
    1. Daver N.G., Montesinos P., DeAngelo D.J., Wang E.S., Todisco E., Tarella C., Martinelli G., Erba H.P., Deconinck E., Sweet K.L., et al. A phase I/II study of IMGN632, a novel CD123-targeting antibody-drug conjugate, in patients with relapsed/refractory acute myeloid leukemia, blastic plasmacytoid dendritic cell neoplasm, and other CD123-positive hematologic malignancies. J. Clin. Oncol. 2020;38:TPS7563. doi: 10.1200/JCO.2020.38.15_suppl.TPS7563.
    1. Frankel A., Liu J.-S., Rizzieri D., Hogge D. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk. Lymphoma. 2008;49:543–553. doi: 10.1080/10428190701799035.
    1. Togami K., Pastika T., Stephansky J., Ghandi M., Christie A.L., Jones K.L., Johnson C.A., Lindsay R.W., Brooks C.L., Letai A., et al. DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. J. Clin. Investig. 2019;129:5005–5019. doi: 10.1172/JCI128571.
    1. Huang S., Chen Z., Yu J.F., Young D., Bashey A., Ho A.D., Law P. Correlation Between IL-3 Receptor Expression and Growth Potential of Human CD34+Hematopoietic Cells from Different Tissues. Stem Cells. 1999;17:265–272. doi: 10.1002/stem.170265.
    1. Sanchez-Correa B., Bergua J.M., Campos C., Gayoso I., Arcos M.J., Bañas H., Morgado S., Casado J.G., Solana R., Tarazona R. Cytokine profiles in acute myeloid leukemia patients at diagnosis: Survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 2013;61:885–891. doi: 10.1016/j.cyto.2012.12.023.
    1. Haubner S., Perna F., Köhnke T., Schmidt C., Berman S., Augsberger C., Schnorfeil F.M., Krupka C., Lichtenegger F.S., Liu X., et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2018;33:64–74. doi: 10.1038/s41375-018-0180-3.
    1. Lin T.L., Watts J., Mims A., Patel P., Lee C., Shahidzadeh A., Shami P., Cull E., Cogle C.R., Uckun F.M. Risk and Severity of Cytokine Release Syndrome in Patients with Relapsed/Refractory (R/R) AML or MDS Treated with CD3xCD123 Bispecific Antibody APVO436; Proceedings of the 63rd ASH Annual Meeting; Atlanta, GA, USA. 11–14 December 2021.
    1. Chen L.Y., Biggs C.M., Jamal S., Stukas S., Wellington C.L., Sekhon M.S. Soluble interleukin-6 receptor in the COVID-19 cytokine storm syndrome. Cell Rep. Med. 2021;2:100269. doi: 10.1016/j.xcrm.2021.100269.
    1. Dinardo C.D., Jonas B.A., Pullarkat V., Thirman M.J., Garcia J.S., Wei A.H., Konopleva M., Döhner H., Letai A., Fenaux P., et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020;383:617–629. doi: 10.1056/NEJMoa2012971.
    1. Lee J., Khan D.H., Hurren R., Xu M., Na Y., Kang H., Mirali S., Wang X., Gronda M.V., Jitkova Y., et al. Venetoclax enhances T cell-mediated anti-leukemic activity by increasing ROS production. Blood. 2021;138:234–245. doi: 10.1182/blood.2020009081.
    1. Riccioni R., Diverio D., Riti V., Buffolino S., Mariani G., Boe A., Cedrone M., Ottone T., Foa R., Testa U. Interleukin (IL)-3/granulocyte macrophage-colony stimulating factor/IL-5 receptor alpha and beta chains are preferentially expressed in acute myeloid leukaemias with mutated FMS-related tyrosine kinase 3 receptor. Br. J. Haematol. 2009;144:376–387. doi: 10.1111/j.1365-2141.2008.07491.x.
    1. Riccioni R., Pelosi E., Riti V., Castelli G., Lo-Coco F., Testa U. Immunophenotypic features of acute myeloid leukaemia patients exhibiting high FLT3 expression not associated with mutations. Br. J. Haematol. 2011;153:33–42. doi: 10.1111/j.1365-2141.2011.08577.x.
    1. Rollins-Raval M., Pillai R., Warita K., Mitsuhashi-Warita T., Mehta R., Boyiadzis M., Djokic M., Kant J.A., Roth C.G. CD123 Immunohistochemical Expression in Acute Myeloid Leukemia is Associated With Underlying FLT3-ITD and NPM1 Mutations. Appl. Immunohistochem. Mol. Morphol. 2013;21:212–217. doi: 10.1097/PAI.0b013e318261a342.

Source: PubMed

3
Abonner