Risk, Characteristics and Biomarkers of Cytokine Release Syndrome in Patients with Relapsed/Refractory AML or MDS Treated with CD3xCD123 Bispecific Antibody APVO436

Fatih M Uckun, Justin Watts, Alice S Mims, Prapti Patel, Eunice Wang, Paul J Shami, Elizabeth Cull, Cynthia Lee, Christopher R Cogle, Tara L Lin, Fatih M Uckun, Justin Watts, Alice S Mims, Prapti Patel, Eunice Wang, Paul J Shami, Elizabeth Cull, Cynthia Lee, Christopher R Cogle, Tara L Lin

Abstract

We evaluate the risk, characteristics and biomarkers of treatment-emergent cytokine release syndrome (CRS) in patients with relapsed/refractory acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) who received APVO436 during the dose-escalation phase of a Phase 1B study (ClinicalTrials.gov, identifier: NCT03647800). Of four patients who developed Grade ≥ 3 CRS, two received steroid prophylaxis. The dose level, gender, race, obesity, or baseline hematologic parameters in peripheral blood did not predict the risk of CRS. Patients with a higher leukemia burden as determined by a higher total WBC, higher percentage of blasts in bone marrow, or higher percentage of blasts in peripheral blood (by hematopathology or immunophenotyping) did not have a higher incidence of CRS. There was an age difference between patients who did versus patients who did not develop CRS (72.9 ± 1.6 years (Median 73.5 years) vs. 63.3 ± 2.3 years (Median: 65.0 years), which was borderline significant (p = 0.04). Premedication with steroids did not eliminate the risk of CRS. Cytokine profiling in patients who developed CRS after APVO436 infusion indicates that the predominant cytokine in this inflammatory cytokine response was IL-6. APVO436-associated CRS was generally manageable with tocilizumab with or without dexamethasone. Notably, the development of CRS after APVO436 therapy did not appear to be associated with a response. The prolonged stabilization of disease, partial remissions and complete remissions were achieved in both patients who experienced CRS, as well as patients who did not experience CRS after APVO436 infusions.

Keywords: AML; APVO436; CD123; T-cells; bispecific antibody; clinical study; leukemia.

Conflict of interest statement

T.L.L., A.S.M., P.P., P.J.S., E.C., C.R.C., E.W., and J.W. and their institutions received research funding in the form of investigative site awards from Aptevo Therapeutics for conducting the study. F.M.U. and C.L. received compensation from Aptevo Therapeutics as consultants. No other conflicts are reported.

Figures

Figure 1
Figure 1
Serum cytokine levels of patients who developed CRS after APVO436. The MSD U-PLEX assay platform was used for measurement of serum levels of the proinflammatory cytokines IL-5, IL-6, IL-10 and TNF-α by electrochemiluminescence in serum samples from a select group of 4 primary AML patients who experienced Grade 2–4 CRS. Serum samples obtained pretreatment and at multiple timepoints after initiation of APVO436 treatment were used to understand the longitudinal changes in serum cytokine levels. The results are also presented in Table S6. See text for detailed discussion of the results. (A) Serum IL-6 levels (B) Serum IL-10 levels (C) Serum TNFα levels (D) Serum MCP-1 levels.
Figure 2
Figure 2
Survival outcome of AML/MDS patients according to development of CRS in the course of their APVO436 therapy. Depicted are the overall survival curves of the 10 patients who developed CRS and 36 patients who did not. See also Table 2.

References

    1. Mims A.S., Blum W. Progress in the problem of relapsed or refractory acute myeloid leukemia. Curr. Opin. Hematol. 2019;26:88–95. doi: 10.1097/MOH.0000000000000490.
    1. Schlenk R.F., Muller-Tidow C., Benner A., Kieser M. Relapsed/refractory acute myeloid leukemia: Any progress? Curr. Opin. Oncol. 2017;29:467–473. doi: 10.1097/CCO.0000000000000404.
    1. DiNardo C.D., Rausch C.R., Benton C., Kadia T., Jain N., Pemmaraju N., Daver N., Covert W., Marx K.R., Mace M., et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am. J. Hematol. 2018;93:401–407. doi: 10.1002/ajh.25000.
    1. Lai C., Doucette K., Norsworthy K. Recent drug approvals for acute myeloid leukemia. J. Hematol. Oncol. 2019;12:100. doi: 10.1186/s13045-019-0774-x.
    1. Ferrara F., Lessi F., Vitagliano O., Birkenghi E., Rossi G. Current Therapeutic Results and Treatment Options for Older Patients with Relapsed Acute Myeloid Leukemia. Cancers. 2019;11:224. doi: 10.3390/cancers11020224.
    1. DiNardo C.D., Wei A.H. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135:85–96. doi: 10.1182/blood.2019001239.
    1. Blum W.G., Mims A.S. Treating acute myeloid leukemia in the modern era: A primer. Cancer. 2020;126:4668–4677. doi: 10.1002/cncr.32904.
    1. Thol F., Heuser M. Treatment for Relapsed/Refractory Acute Myeloid Leukemia. Hemasphere. 2021;5:e572. doi: 10.1097/HS9.0000000000000572.
    1. Short N.J., Konopleva M., Kadia T.M., Borthakur G., Ravandi F., DiNardo C.D., Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov. 2020;10:506–525. doi: 10.1158/-19-1011.
    1. Daver N., Wei A.H., Pollyea D.A., Fathi A.T., Vyas P., DiNardo C.D. New Directions for Emerging Therapies in Acute Myeloid Leukemia: The Next Chapter. Blood Cancer J. 2020;10:107. doi: 10.1038/s41408-020-00376-1.
    1. Uy G.L., Aldoss I., Foster M.C., Sayre P.H., Wieduwilt M.J., Advani A.S., Godwin J.E., Arellano M.L., Sweet K.L., Emadi A., et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137:751–762. doi: 10.1182/blood.2020007732.
    1. Daver N., Alotaibi A.S., Bücklein V., Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: Current concepts and future developments. Leukemia. 2021;35:1843–1863. doi: 10.1038/s41375-021-01253-x.
    1. Kovtun Y., Jones G.E., Adams S., Harvey L., Audette C.A., Wilhelm A., Bai C., Rui L., Laleau R., Liu F., et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2:848–858. doi: 10.1182/bloodadvances.2018017517.
    1. Einsele H., Borghaei H., Orlowski R.Z., Subklewe M., Roboz G.J., Zugmaier G., Kufer P., Iskander K., Kantarjian H.M. The BiTE (Bispecific T-cell Engager) Platform: Development and Future Potential of a Targeted Immuno-Oncology Therapy across Tumor Types. Cancer. 2020;126:3192–3201. doi: 10.1002/cncr.32909.
    1. Isidori A., Cerchione C., Daver N., DiNardo C., Garcia-Manero G., Konopleva M., Jabbour E., Ravandi F., Kadia T., Burguera A.F., et al. Immunotherapy in Acute Myeloid Leukemia: Where We Stand. Front. Oncol. 2021;11:656218. doi: 10.3389/fonc.2021.656218.
    1. Huehls A.M., Coupet T.A., Sentman C.L. Bispecific T-cell Engagers for Cancer Immunotherapy. Immunol. Cell Biol. 2015;93:290–296. doi: 10.1038/icb.2014.93.
    1. Morris E.C., Neelapu S.S., Giavridis T., Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 2021 doi: 10.1038/s41577-021-00547-6.
    1. Hay K.A., Hanafi L.A., Li D., Gust J., Liles W.C. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–2306. doi: 10.1182/blood-2017-06-793141.
    1. Aldoss I., Khaled S.K., Budde E., Stein A.S. Cytokine Release Syndrome with the Novel Treatments of Acute Lymphoblastic Leukemia: Pathophysiology, Prevention, and Treatment. Curr. Oncol. Rep. 2019;21:4. doi: 10.1007/s11912-019-0753-y.
    1. Fajgenbaum D.C., June C.H. Cytokine Storm. N. Engl. J. Med. 2020;383:2255–2273. doi: 10.1056/NEJMra2026131.
    1. Lee D.W., Gardner R., Porter D.L., Louis C.U., Ahmed N., Jensen M., Grupp S.A., Mackall C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–195. doi: 10.1182/blood-2014-05-552729.
    1. Testa U., Riccioni R., Coccia E., Stellacci E., Samoggia P., Latagliata R., Latagliata R., Mariani G., Rossini A., Battistini A., et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity and poor prognosis. Blood. 2002;100:2980–2988. doi: 10.1182/blood-2002-03-0852.
    1. Hwang K., Park C.J., Jang S., Chi H.S., Kim D.Y., Lee J.H., Im H.J., Seo J.J. Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann. Hematol. 2012;91:1541–1546. doi: 10.1007/s00277-012-1501-7.
    1. Jin L., Lee E.M., Ramshaw H.S., Busfiled S.J., Peoppl A.G., Wilkinson L., Wilkinson L., Guthridge M.A., Thomas D., Barry E.F., et al. Monoclonal-antibody mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemia stem cells. Cell Stem Cell. 2009;5:31–42. doi: 10.1016/j.stem.2009.04.018.
    1. Jordan C.T., Upchurch D., Szilvassy S.J., Guzman M.L., Howard D.S., Pettigrew A.L., Meyerrose T., Rossi R., Grimes B., Rizzieri D.A., et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–1784. doi: 10.1038/sj.leu.2401903.
    1. Comeau M.R., Gottschalk R., Daugherty M., Sewell T., Sewell T., Misher L., Bannink J., Johnson S., Parr L., Kumer J., et al. APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity with limited cytokine release, is well tolerated in repeat dose toxicology studies in cynomolgus macaques. In Proceedings of the American Association for Cancer Research Annual Meeting 2019, Atlanta, GA, USA, 29 March–3 April 2019; AACR: Philadelphia, PA, USA. Cancer Res. 2019;79((Suppl. 13)) Abstract nr LB-199.
    1. Comeau M.R., Miller R.E., Bader R., Gottschalk R., Daughterty M., Sewell T., Misher L., Parr L., DeFrancesco M., Bienvenue D., et al. APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release. In Proceedings of the American Association for Cancer Research Annual Meeting 2018, Chicago, IL, USA, 14–18 April 2018; AACR: Philadelphia, PA, USA. Cancer Res. 2018;78((Suppl. 13)) Abstract nr 1786.
    1. Hernandez-Hoyos G., Sewell T., Bader R., Bannink J., Chenault R.A., Daugherty M., Dasovich M., Fang H., Gottschalk R., Kumer J., et al. MOR209/ES414, a Novel Bispecific Antibody Targeting PSMA for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer Ther. 2016;15:2155–2165. doi: 10.1158/1535-7163.MCT-15-0242.
    1. Uckun F.M., Lin T.L., Mims A.S., Patel P., Lee C., Shahidzadeh A., Shami P.J., Cull E., Cogle C.R., Watts J. A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. Cancers. 2021;13:4113. doi: 10.3390/cancers13164113.
    1. Ravandi F., Bashey A., Stock W., Foran J.M., Mawad R., Egan D., Blum W., Yang A., Pastore A., Johnson C., et al. Complete Responses in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of Vibecotamab (XmAb14045), a CD123 X CD3 T Cell-Engaging Bispecific Antibody; Initial Results of a Phase 1 Study. Blood. 2020;136:4–5. doi: 10.1182/blood-2020-134746.
    1. Muller P.Y., Milton M., Lloyd P., Sims J., Brennan F.R. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr. Opin. Biotechnol. 2009;20:722–729. doi: 10.1016/j.copbio.2009.10.013.
    1. Lee D.W., Santomasso B.D., Locke F.L., Ghobadi A., Turtle C.J., Brudno J.N., Maus M.V., Park J.H., Mead E., Pavletic S., et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019;25:625–638. doi: 10.1016/j.bbmt.2018.12.758.
    1. Breen E.C., Reynolds S.M., Cox C., Jacobson L.P., Magpantay L., Mulder C.B., Dibben O., Margolick J.B., Bream J.H., Sambrano E., et al. Multisite comparison of high-sensitivity multiplex cytokine assays. Clin. Vaccine Immunol. 2011;18:1229–1242. doi: 10.1128/CVI.05032-11.
    1. Canter R.J., Le C.T., Beerthuijzen J., Murphy W.J. Obesity as an immune-modifying factor in cancer immunotherapy. J. Leukoc. Biol. 2018;104:487–497. doi: 10.1002/JLB.5RI1017-401RR.
    1. Kim J., Nam J.H. Insight into the relationship between obesity-induced low-level chronic inflammation and COVID-19 infection. Int. J. Obes. 2020;44:1541–1542. doi: 10.1038/s41366-020-0602-y.
    1. Schwartz R.N., Stover L., Dutcher J.P. Managing toxicities of high-dose interleukin-2. Oncology. 2002;16((Suppl. 13)):11–20.
    1. Subklewe M., Stein A., Walter R.B., Bhatia R., Wei A.H., Ritchie D., Bücklein V., Vachhani P., Dai T., Hindoyan A., et al. Patients with Relapsed/Refractory Acute Myeloid Leukemia. European Hematology Association; Brussels, Belgium: 2020. Updated Results from a Phase 1 First-in-Human Dose Escalation Study of AMG 673, a Novel Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) Abstract: EP548.
    1. García Roche A., Díaz Lagares C., Élez E., Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med. Intensiva. 2019;43:480–488. doi: 10.1016/j.medin.2019.01.009.
    1. Simbaqueba C.C., Aponte M.P., Kim P., Deswal A., Palaskas N.L., Iliescu C., Jahangir E., Yang E.H., Steiner R.E., Lopez-Mattei J. Cardiovascular complications of chimeric antigen receptor therapy: Cytokine release syndrome and associated arrhytmias. J. Immunother. Precis. Oncol. 2020;3:113–120. doi: 10.36401/JIPO-20-10.
    1. Chen L.Y.C., Biggs C.M., Jamal S., Stukas S., Wellington C.L., Sekhon M.S. Soluble Interleukin-6 Receptor in the COVID-19 Cytokine Storm Syndrome. Cell Rep. Med. 2021;2:100269. doi: 10.1016/j.xcrm.2021.100269.

Source: PubMed

3
Abonner