A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain

Kevin E Bennet, Jonathan R Tomshine, Hoon-Ki Min, Felicia S Manciu, Michael P Marsh, Seungleal B Paek, Megan L Settell, Evan N Nicolai, Charles D Blaha, Abbas Z Kouzani, Su-Youne Chang, Kendall H Lee, Kevin E Bennet, Jonathan R Tomshine, Hoon-Ki Min, Felicia S Manciu, Michael P Marsh, Seungleal B Paek, Megan L Settell, Evan N Nicolai, Charles D Blaha, Abbas Z Kouzani, Su-Youne Chang, Kendall H Lee

Abstract

Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301).

Keywords: carbon fiber microelectrode; deep brain stimulation (DBS); diamond-based electrode; dopamine; fast scan cyclic voltammetry (FSCV); neuromodulation.

Figures

Figure 1
Figure 1
Diamond FSCV probe construction. Panel (A) depicts the overall full length electrode suitable for acute large animal and human recordings. The scale bar is 25 mm. Panel (B) shows a detailed optical magnification of the tip and its individual components, scale bar is 500 μm. Panel (C) is an SEM image, showing the transition from the parylene insulation to the diamond sensing tip, scale bar is 100 μm (crystal detail scale bar is 10 μm). Panels (D,E) show Raman spectral maps of the probe depicted in panel (C), scale bar is 10 μm. The three color channels assigned to material constituents are: blue for boron doped diamond, red for diamond, and green for carbon sp2 impurities. Magenta color observed in image (D) is a combination of blue and red. Panel (F) shows the integrated Raman spectrum of Raman images in panels (D,E). The Raman measurements were acquired with a 532 nm excitation source.
Figure 2
Figure 2
Diamond FSCV probe exposed to dopamine at 2.5 μM (A), adenosine at 20 μM (B), and dopamine + adenosine at the same concentrations (C). Note that the signals of the two neurotransmitters occur at different voltages and are effectively additive. That is, the voltammogram of dopamine + adenosine is a linear combination of the voltammograms of the two individual neurotransmitters.
Figure 3
Figure 3
SEM images of diamond electrode (A–C) and carbon fiber electrode (D–F). Panels (A,D) are at t = 0, panels (B,E)t = 72 h, and panels (C,F) are at t = 144 h. Panels (G–I) show diamond and carbon fiber calibration curves for the detection of dopamine at t = 0 h (G), t = 72 h (H), and t = 144 h (I) of continuous use.
Figure 4
Figure 4
Diamond electrode performance in vitro and in vivo. Panel (A) depicts a diamond electrode's response to identical in vitro conditions. Panel (B) depicts the same diamond electrode in the ventral lateral thalamus of an anesthetized pig, where an adenosine-like signature secondary to mechanical stimulation was observed. Panel (C) depicts the same electrode in the subthalamic nucleus of an awake human undergoing DBS lead-placement surgery for essential tremor (prior to the DBS lead placement). In panels (B,C), the signature is consistent with adenosine based on the oxidation peaks near the switching potential at 1.5 V. All “diamond” data was recorded with the same specific electrode (although not in the order shown—the human data were always gathered first).
Figure 5
Figure 5
Comparison of diamond electrode (the same electrode depicted in Figure 4) with a carbon fiber electrode in a flow cell and in vivo in the ventral intermediate (VIM) nucleus of the thalamus in a human patient. In both in vivo cases, neurotransmitter release was evoked by mechanical stimulation (“microthalamotomy” effect) and showed an adenosine-like signal. (A) Carbon fiber electrode in vitro; (B) Diamond electrode in vitro; (C) Carbon fiber electrode in vivo (human); (D) Diamond electrode in vivo (human).
Figure 6
Figure 6
Intraoperative tremor recordings before and after DBS lead placement. This patient underwent DBS lead placement for essential tremor, with the diamond-based electrode placed in the ventral intermediate (VIM) nucleus of the thalamus prior to therapeutic DBS lead placement (top panels A–C). Throughout the surgery, the patient wore a hand-mounted wireless accelerometer to measure tremor. Prior to surgery, the patient displayed a pronounced tremor at 4.2 Hz (left panels, D,F), while after lead placement the mechanical stimulation alone (“microthalamotomy” effect) caused a cessation of this tremor with no applied voltage (right panels, E,G).

References

    1. Adams K. L., Puchades M., Ewing A. G. (2008). In vitro electrochemistry of biological systems. Annu. Rev. Anal. Chem. 1, 329. 10.1146/annurev.anchem.1.031207.113038
    1. Agnesi F., Tye S. J., Bledsoe J. M., Griessenauer C. J., Kimble C. J., Sieck G. C., et al. . (2009). Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J. Neurosurg. 111, 701–711. 10.3171/2009.3.JNS0990
    1. Bekar L., Libionka W., Tian G. F., Xu Q., Torres A., Wang X., et al. . (2008). Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat. Med. 14, 75–80. 10.1038/nm1693
    1. Bernard M., Baron C., Deneuville A. (2004). About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films. Diam. Relat. Mater. 13, 896–899. 10.1016/j.diamond.2003.11.082
    1. Bitziou E., O'Hare D., Patel B. A. (2008). Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach. Anal. Chem. 80, 8733–8740. 10.1021/ac801413b
    1. Bledsoe J. M., Kimble C. J., Covey D. P., Blaha C. D., Agnesi F., Mohseni P., et al. . (2009). Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. J. Neurosurg. 111, 712–723. 10.3171/2009.3.JNS081348
    1. Burns R. S., LeWitt P. A., Ebert M. H., Pakkenberg H., Kopin I. J. (1985). The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 312, 1418–1421. 10.1056/NEJM198505303122203
    1. Cahill P. S., Walker Q. D., Finnegan J. M., Mickelson G. E., Travis E. R., Wightman R. M. (1996). Microelectrodes for the measurement of catecholamines in biological systems. Anal. Chem. 68, 3180–3186. 10.1021/ac960347d
    1. Chan H. Y., Aslam D. M., Wiler J. A., Casey B. (2009). A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J. Microelectromech. Syst. 18, 511–521. 10.1109/JMEMS.2009.2015493
    1. Chang S. Y., Jay T., Munoz J., Kim I., Lee K. H. (2012a). Wireless fast-scan cyclic voltammetry measurement of histamine using WINCS–a proof-of-principle study. Analyst 137, 2158–2165. 10.1039/c2an16038b
    1. Chang S. Y., Kim I., Marsh M. P., Jang D. P., Hwang S. C., Van Gompel J. J., et al. . (2012b). Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin. Proc. 87, 760–765. 10.1016/j.mayocp.2012.05.006
    1. Cragg S. J., Hille C. J., Greenfield S. A. (2000). Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J. Neurosci. 20, 8209–8217.
    1. Dommett E., Coizet V., Blaha C. D., Martindale J., Lefebvre V., Walton N., et al. . (2005). How visual stimuli activate dopaminergic neurons at short latency. Science 307, 1476–1479. 10.1126/science.1107026
    1. Garris P. A., Kilpatrick M., Bunin M. A., Michael D., Walker Q. D., Wightman R. M. (1999). Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398, 67–69. 10.1038/18019
    1. Halpern J. M., Xie S. T., Sutton G. P., Higashikubo B. T., Chestek C. A., Lu H., et al. (2006). Diamond electrodes for neurodynamic studies in Aplysia californica. Diam. Relat. Mater. 15, 183–187. 10.1016/j.diamond.2005.06.039
    1. Hashemi P., Dankoski E. C., Petrovic J., Keithley R. B., Wightman R. M. (2009). Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81, 9462–9471. 10.1021/ac9018846
    1. Keithley R. B., Takmakov P., Bucher E. S., Belle A. M., Owesson-White C. A., Park J., et al. . (2011). Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry. Anal. Chem. 83, 3563–3571. 10.1021/ac200143v
    1. Lee K. H., Blaha C. D., Garris P. A., Mohseni P., Horne A. E., Bennet K. E., et al. . (2009). Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation 12, 85–103. 10.1111/j.1525-1403.2009.00199.x
    1. Lee K. H., Blaha C. D., Harris B. T., Cooper S., Hitti F. L., Leiter J. C., et al. . (2006). Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson's disease. Eur. J. Neurosci. 23, 1005–1014. 10.1111/j.1460-9568.2006.04638.x
    1. Lee K. H., Chang S. Y., Roberts D. W., Kim U. (2004). Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J. Neurosurg. 101, 511–517. 10.3171/jns.2004.101.3.0511
    1. Lee K. H., Kristic K., van Hoff R., Hitti F. L., Blaha C., Harris B., et al. . (2007). High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res. 1162, 121–129. 10.1016/j.brainres.2007.06.021
    1. Marcelli G., Patel B. A. (2010). Understanding changes in uptake and release of serotonin from gastrointestinal tissue using a novel electroanalytical approach. Analyst 135, 2340–2347. 10.1039/c0an00260g
    1. McCreery D. B., Agnew W. F., Yuen T. G., Bullara L. A. (1995). Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med. Biol. Eng. Comput. 33(3 Spec No), 426–429. 10.1007/BF02510526
    1. Meng H. M., Wang Y. A., Huang M., Lin W. H., Wang S., Zhang B. M. (2011). Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res. 1422, 32–38. 10.1016/j.brainres.2011.08.041
    1. Navailles S., Benazzouz A., Bioulac B., Gross C., De Deurwaerdere P. (2010). High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson's disease. J. Neurosci. 30, 2356–2364. 10.1523/JNEUROSCI.5031-09.2010
    1. Park J., Show Y., Quaiserova V., Galligan J. J., Fink G. D., Swain G. M. (2005). Diamond microelectrodes for use in biological environments. J. Electroanal. Chem. (Lausanne. Switz.) 583, 56–68. 10.1016/j.jelechem.2005.04.032
    1. Patel B. A., Bian X. H., Quaiserova-Mocko V., Galligan J. J., Swain G. M. (2007). In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41–47. 10.1039/B611920D
    1. Phillips P. E. M., Stuber G. D., Heien M. L. A. V., Wightman R. M., Carelli R. M. (2003). Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618. 10.1038/nature01476
    1. Rice M. E., Cragg S. J., Greenfield S. A. (1997). Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J. Neurophysiol. 77, 853–862.
    1. Roberts J. G., Moody B. P., McCarty G. S., Sombers L. A. (2010). Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir 26, 9116–9122. 10.1021/la9048924
    1. Robinson D. L., Venton B. J., Heien M. L., Wightman R. M. (2003). Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773. 10.1373/49.10.1763
    1. Runnels P. L., Joseph J. D., Logman M. J., Wightman R. M. (1999). Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Anal. Chem. 71, 2782–2789. 10.1021/ac981279t
    1. Sanchez-Gonzalez M. A., Garcia-Cabezas M. A., Rico B., Cavada C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083. 10.1523/JNEUROSCI.0968-05.2005
    1. Sarter M., Bruno J. P., Parikh V. (2007). Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 32, 1452–1461. 10.1038/sj.npp.1301285
    1. Shon Y. M., Chang S. Y., Tye S. J., Kimble C. J., Bennet K. E., Blaha C. D., et al. . (2010a). Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. J. Neurosurg. 112, 539–548. 10.3171/2009.7.JNS09787
    1. Shon Y. M., Lee K. H., Goerss S. J., Kim I. Y., Kimble C., Van Gompel J. J., et al. . (2010b). High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci. Lett. 475, 136–140. 10.1016/j.neulet.2010.03.060
    1. Singh Y. S., Sawarynski L. E., Michael H. M., Ferrell R. E., Murphey-Corb M. A., Swain G. M., et al. . (2010). Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem. Neurosci. 1, 49–64. 10.1021/cn900012y
    1. Staal R. G., Mosharov E. V., Sulzer D. (2004). Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci. 7, 341–346. 10.1038/nn1205
    1. Suaud-Chagny M. F. (2004). In vivo monitoring of dopamine overflow in the central nervous system by amperometric techniques combined with carbon fibre electrodes. Methods 33, 322–329. 10.1016/j.ymeth.2004.01.009
    1. Suzuki A., Ivandini T. A., Yoshimi K., Fujishima A., Oyama G., Nakazato T., et al. . (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615. 10.1021/ac071519h
    1. Swamy B. E. K., Venton B. J. (2007). Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal. Chem. 79, 744–750. 10.1021/ac061820i
    1. Takmakov P., Zachek M. K., Keithley R. B., Walsh P. L., Donley C., McCarty G. S., et al. . (2010). Carbon Microelectrodes with a Renewable Surface. Anal. Chem. 82, 2020–2028. 10.1021/ac902753x
    1. Wightman R. M., Robinson D. L. (2002). Transient changes in mesolimbic dopamine and their association with ‘reward’. J. Neurochem. 82, 721–735. 10.1046/j.1471-4159.2002.01005.x
    1. Xie S. T., Shafer G., Wilson C. G., Martin H. B. (2006). In vitro adenosine detection with a diamond-based sensor. Diam. Relat. Mater. 15, 225–228. 10.1016/j.diamond.2005.08.018
    1. Yoshimi K., Naya Y., Mitani N., Kato T., Inoue M., Natori S., et al. . (2011). Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci. Res. 71, 49–62. 10.1016/j.neures.2011.05.013
    1. Zhao H., Bian X. C., Galligan J. J., Swain G. M. (2010). Electrochemical measurements of serotonin (5-HT) release from the guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode. Diam. Relat. Mater. 19, 182–185. 10.1016/j.diamond.2009.10.004

Source: PubMed

3
Abonner