ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation

A A Postigo, D C Dean, A A Postigo, D C Dean

Abstract

A number of genes, spanning the evolutionary scale from yeast to mammals, that are involved in spatial and temporal patterning during development contain zinc finger and homeodomain motifs. One such zinc finger/homeodomain protein is Drosophila Zfh-1, a member of the zfh family of Drosophila genes, which is expressed in muscle precursors and is critical for the proper development of muscle. Here we demonstrate that a vertebrate homolog of Zfh-1 (ZEB) is a negative regulator of muscle differentiation. We show that ZEB binds to a subset of E boxes in muscle genes and functions by actively repressing transcription. One target of this repression is the members of the MEF-2 family, which synergize with proteins of the myogenic basic helix-loop-helix family (bHLH) (myoD, myf-5, myogenin and MRF-4) to induce myogenic differentiation. As muscle differentiation proceeds, myogenic bHLH proteins accumulate to levels sufficient to displace ZEB from the E boxes, releasing the repression and allowing bHLH proteins to further activate transcription. This mechanism of active transcriptional repression distinguishes ZEB from other negative regulators of myogenesis (Id, Twist and I-mfa) that inhibit muscle differentiation by simply binding and inactivating myogenic factors. The relative affinity of ZEB versus myogenic bHLH proteins varies for E boxes in different genes such that ZEB would be displaced from different genes at distinct times as myogenic bHLH proteins accumulate during myogenesis, thus providing a mechanism to regulate temporal order of gene expression.

References

    1. Cell. 1985 Nov;43(1):165-75
    1. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2336-40
    1. Cell. 1990 Apr 6;61(1):49-59
    1. Cell. 1990 Oct 5;63(1):23-32
    1. Mech Dev. 1991 Jun;34(2-3):113-22
    1. Science. 1991 Nov 29;254(5036):1385-7
    1. Mol Cell Biol. 1992 May;12(5):1940-9
    1. Cell. 1992 Jun 26;69(7):1107-19
    1. Nature. 1992 Jul 16;358(6383):259-61
    1. Mol Cell Biol. 1992 Sep;12(9):3665-77
    1. Genes Dev. 1992 Sep;6(9):1728-39
    1. Mol Cell Biol. 1992 Nov;12(11):4994-5003
    1. Dev Biol. 1992 Nov;154(1):84-94
    1. Mol Cell Biol. 1993 May;13(5):2753-64
    1. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4122-6
    1. Mol Cell Biol. 1993 Sep;13(9):5133-40
    1. Cell. 1993 Sep 24;74(6):1033-42
    1. Development. 1993 Oct;119(2):433-46
    1. Mol Cell Biol. 1994 Feb;14(2):1395-401
    1. J Biol Chem. 1994 Jun 3;269(22):15652-60
    1. Mol Cell Biol. 1994 Sep;14(9):5692-700
    1. Mol Cell Biol. 1994 Sep;14(9):6153-63
    1. Genes Dev. 1994 Sep 15;8(18):2203-11
    1. J Clin Invest. 1994 Nov;94(5):1722-8
    1. Science. 1995 Feb 3;267(5198):688-93
    1. J Biol Chem. 1995 Feb 17;270(7):2889-92
    1. Science. 1995 Mar 3;267(5202):1360-3
    1. Dev Dyn. 1995 Feb;202(2):145-52
    1. Nature. 1995 Jun 29;375(6534):812-5
    1. Dev Biol. 1995 Nov;172(1):2-14
    1. Cell. 1995 Dec 29;83(7):1125-36
    1. Genes Dev. 1996 Mar 15;10(6):700-10
    1. Genes Dev. 1996 Feb 15;10(4):447-60
    1. Immunity. 1996 Mar;4(3):301-11
    1. Science. 1996 Jun 7;272(5267):1476-80
    1. Cell. 1996 Jun 28;85(7):997-1008
    1. Mol Cell Biol. 1996 Sep;16(9):4862-8
    1. Curr Opin Cell Biol. 1996 Jun;8(3):358-64
    1. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9366-73
    1. Cell. 1996 Sep 6;86(5):731-41
    1. EMBO J. 1997 Jul 1;16(13):3924-34

Source: PubMed

3
Abonner